android进阶android基本功其他

Java实现各种常用的排序算法

2018-08-24  本文已影响64人  BillSearchGates

Java实现各种常用的排序算法,包括:冒泡排序、插入排序、二分排序、选择排序、希尔排序、堆排序、快速排序(两种写法)、归并排序、基数排序和计数排序(两种写法)。

  1. 冒泡排序

     /**
      * 冒泡排序(大的值从前往后冒泡)
      * 优点:稳定排序;适用于数组存储的数据和链表存储的数据;
      */
     public static int[] bubbleSort(int[] a) {
         for (int end = a.length - 1; end > 0; end--) {
             boolean flag = false; //增加一个判断是否发生过交换的标记
             for (int j = 0; j < end; j++) {
                 if (a[j] > a[j + 1]) {
                     swap(a, j, j + 1);
                     flag = true;
                 }
             }
             if (!flag) { //如果扫描一遍发现没有发生交换则说明序列已经有序,退出循环
                 break;
             }
         }
         return a;
     }
    
     /**
      * 冒泡排序(小的值从后往前下沉)
      * 优点:稳定排序;适用于数组存储的数据和链表存储的数据;
      */
     public static int[] bubbleSort2(int[] a) {
         for (int start = 0; start < a.length - 1; start++) {
             boolean flag = false; //增加一个判断是否发生过交换的标记
             for (int j = a.length - 1; j > start; j--) {
                 if (a[j] < a[j - 1]) {
                     swap(a, j, j - 1);
                     flag = true;
                 }
             }
    
             if (!flag) { //如果扫描一遍发现没有发生交换则说明序列已经有序,退出循环
                 break;
             }
         }
         return a;
     }
    
  2. 插入排序

     /**
      * 插入排序
      */
     public static int[] insertSort(int[] a) {
         for (int i = 1; i < a.length; i++) {
             int temp = a[i];
             int j = i;
             while (j > 0 && temp < a[j - 1]) {
                 a[j] = a[j - 1];
                 j--;
             }
             a[j] = temp;
         }
         return a;
     }
    
  3. 二分排序

     /**
      * 二分排序
      * 也称折半插入排序,查找次数为O(n log n),移动次数为O(n^2)
      * Time complexity: O(n^2)
      * 稳定性:稳定排序
      */
     public static int[] binarySort(int[] a) {
         int i, j;
         int low, high, mid;
         int temp;
         for (i = 1; i < a.length; i++) {
             temp = a[i];
             low = 0;
             high = i - 1;
             while (low <= high) {
                 mid = (low + high) / 2;
                 if (a[mid] > temp) {
                     high = mid - 1;
                 } else {
                     low = mid + 1;
                 }
             }
             for (j = i - 1; j > high; j--) {
                 a[j + 1] = a[j];
             }
             a[high + 1] = temp;
         }
         return a;
     }
    
  4. 选择排序

     /**
      * 选择排序
      */
     public static int[] selectionSort(int[] a) {
         for (int i = 0; i < a.length; i++) {
             for (int j = i + 1; j < a.length; j++) {
                 if (a[i] > a[j]) {
                     swap(a, i, j);
                 }
             }
             System.out.println(Arrays.toString(a));
         }
         return a;
     }
    
  5. 希尔排序

     /**
      * 希尔排序
      */
     public static int[] shellSort(int[] a) {
         int gap = a.length / 2;
         while (gap >= 1) {
             for (int i = gap; i < a.length; i++) {
                 int j;
                 int temp = a[i];
                 for (j = i - gap; j >= 0 && temp < a[j]; j = j - gap) {
                     a[j + gap] = a[j];
                 }
                 a[j + gap] = temp;
             }
             gap /= 2;
         }
         return a;
     }
    
  6. 堆排序

     /**
      * 堆排序
      */
     public static int[] heapSort(int[] a) {
         buildMaxHeap(a, a.length - 1);
         swap(a, 0, a.length - 1);
         for (int i = 1; i < a.length - 1; i++) {
             adjustMaxHeap(a, 0, a.length - 1 - i);
             swap(a, 0, a.length - 1 - i);
         }
         return a;
     }
    
     public static void buildMaxHeap(int[] data, int lastIndex) {
         for (int i = (lastIndex - 1) / 2; i >= 0; i--) {
             adjustMaxHeap(data, i, lastIndex);
         }
     }
    
     public static void adjustMaxHeap(int[] data, int parent, int lastIndex) {
         /*
          * 通常堆是通过一维数组来实现的。在数组起始位置为 0 的情形中:
          * 父节点 i 的左子节点在位置 (2*i+1);
          * 父节点 i 的右子节点在位置 (2*i+2);
          * 子节点 i 的父节点在位置 floor((i-1)/2);
          */
         while (2 * parent + 1 <= lastIndex) {
             int maxChildIndex = 2 * parent + 1;
    
             // 如果当前左孩子不是末尾元素
             if (maxChildIndex < lastIndex) {
    
                 // 如果左孩子小于右孩子,取右孩子下标
                 if (data[maxChildIndex] < data[maxChildIndex + 1]) {
    
                     maxChildIndex++;
                 }
             }
    
             // 比较当前父节点和最大孩子节点
             if (data[parent] < data[maxChildIndex]) {
                 swap(data, parent, maxChildIndex);
                 parent = maxChildIndex;
             } else {
                 break;
             }
         }
     }
    
     public static void swap(int[] data, int i, int j) {
         int temp = data[i];
         data[i] = data[j];
         data[j] = temp;
     }
    
  7. 快速排序

     /**
      * 快速排序
      */
     public static int[] quickSort(int[] a) {
         if (a.length > 0) {
             quickSortRecursion(a, 0, a.length - 1);
         }
         return a;
     }
    
     public static void quickSortRecursion(int[] data, int low, int high) {
         if (low < high) {
             int middle = partition(data, low, high);
             quickSortRecursion(data, low, middle - 1);
             quickSortRecursion(data, middle + 1, high);
         }
     }
    
     public static int partition(int[] data, int low, int high) {
         int temp = data[low]; // 数组的第一个作为中轴
         while (low < high) {
             while (low < high && data[high] >= temp) {
                 high--;
             }
             data[low] = data[high]; // 比中轴小的记录移到低端
             while (low < high && data[low] <= temp) {
                 low++;
             }
             data[high] = data[low]; // 比中轴大的记录移到高端
         }
         data[low] = temp;
         return low; // 返回中轴的位置
     }
    
     /**
      * 快速排序的第二种写法
      */
     public static int[] quickSort2(int[] a) {
         qSort(a, 0, a.length - 1);
         return a;
     }
    
     public static void qSort(int[] sequence, int low, int high) {
         int pivot = sequence[low]; // 取首元素的为基准
         int left = low, right = high;
         if (low >= high) {
             return;
         }
         swap(sequence, low, high); //将基准与最后一个元素交换
         while (true) {
             //将序列中比基准小的移到基准左边,比基准大的移到基准右边
             while (low < high && sequence[low] <= pivot) {
                 low++;
             }
             while (low < high && sequence[high] >= pivot) {
                 high--;
             }
             if (low < high) {
                 swap(sequence, low, high);
             } else {
                 break;
             }
         }
         swap(sequence, low, right); //将最后的基准换到正确的位置
    
         //分别对两个子集进行快排
         qSort(sequence, left, low - 1);
         qSort(sequence, low + 1, right);
     }
    
  8. 归并排序

     /**
      * 归并排序
      */
     public static int[] mergingSort(int[] a) {
         if (a.length > 0) {
             mergingSortRecursion(a, 0, a.length - 1);
         }
         return a;
     }
    
     public static void mergingSortRecursion(int[] data, int left, int right) {
         if (left < right) {
             int middle = (left + right) / 2;
             mergingSortRecursion(data, left, middle);
             mergingSortRecursion(data, middle + 1, right);
             merge(data, left, middle, right);
         }
     }
    
     public static void merge(int[] data, int left, int middle, int right) {
         int[] tempArray = new int[data.length];
         int i = left; // 左边序列的游标
         int j = middle + 1; // 右边序列的游标
         int k = left; // 临时序列的游标
    
         // 从两个数组中取出最小的放入中间数组
         while (i <= middle && j <= right) {
             if (data[i] <= data[j]) {
                 tempArray[k++] = data[i++];
             } else {
                 tempArray[k++] = data[j++];
             }
         }
    
         // 剩余部分依次放入中间数组
         while (j <= right) {
             tempArray[k++] = data[j++];
         }
         while (i <= middle) {
             tempArray[k++] = data[i++];
         }
    
         // 将中间数组中的内容复制回原数组
         while (left <= right) {
             data[left] = tempArray[left++];
         }
     }
    
  9. 基数排序

     /**
      * 基数排序
      */
     public static int[] radixSort(int[] a) {
         int max = 0;
         for (int i = 0; i < a.length; i++) {
             max = a[i] > max ? a[i] : max;
         }
    
         int time = 0;
         while (max > 0) {
             time++;
             max /= 10;
         }
    
         List<ArrayList<Integer>> queue = new ArrayList<>();
         for (int i = 0; i < 10; i++) {
             queue.add(new ArrayList<>());
         }
    
         for (int i = 0; i < time; i++) {
             // 按某位对原数组进行一趟排序
             for (int j = 0; j < a.length; j++) {
                 int d = a[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
                 ArrayList<Integer> list = queue.get(d);
                 list.add(a[j]);
                 queue.set(d, list);
             }
    
             // 把queue进行过一趟排序的数据拷贝回原数组
             int count = 0;
             for (int k = 0; k < 10; k++) {
                 while (queue.get(k).size() > 0) {
                     a[count] = queue.get(k).get(0);
                     queue.get(k).remove(0);
                     count++;
                 }
             }
         }
         return a;
     }
    
  10. 计数排序

     /**
      * 计数排序法1 取出序号用了少量的比较和循环
      */
     public static int[] countingSort1(int[] a) {
         int max = 0;
         for (int i = 0; i < a.length; i++) {
             max = a[i] > max ? a[i] : max;
         }
         int[] count = new int[max + 1];
         for (int i = 0; i < a.length; i++) {
             count[a[i]]++;
         }
         int sum = 0;
         for (int i = 0; i < count.length; i++) {
             if (count[i] > 0) {
                 for (int j = 0; j < count[i]; j++) {
                     a[sum + j] = i;
                 }
             }
             sum += count[i];
         }
         return a;
     }
    
     /**
      * 计数排序法2 完全没有使用比较和循环
      */
     public static int[] countingSort2(int[] a) {
         int max = 0;
         for (int i = 0; i < a.length; i++) {
             max = a[i] > max ? a[i] : max;
         }
         int[] count = new int[max + 1];
    
         for (int i = 0; i < a.length; i++) {
             count[a[i]]++;
         }
    
         for (int i = 1; i < count.length; i++) {
             count[i] += count[i - 1];
         }
    
         int[] b = new int[a.length];
         for (int i = 0; i < a.length; i++) {
             b[count[a[i]] - 1] = a[i];
             count[a[i]]--;
         }
         return b;
     }
    

各个方法的测试代码实现如下:

    public static void main(String[] args) {
        int a[] = {49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35,
                25, 53, 51};
        System.out.println(Arrays.toString(a));
        System.out.println(Arrays.toString(binarySort(a)));
    }

运行结果如下:

[49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51]
[4, 5, 12, 13, 15, 17, 18, 23, 25, 27, 34, 34, 35, 38, 49, 49, 51, 53, 54, 56, 62, 64, 65, 76, 78, 97, 98, 99]

Process finished with exit code 0

注:简书使用Markdown语言编辑文本时,感觉复制代码调格式很麻烦。

上一篇下一篇

猜你喜欢

热点阅读