9.【动态规划】编辑距离
2019-11-11 本文已影响0人
blackzero2193
题目链接:https://leetcode-cn.com/problems/edit-distance/
描述:给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
- 解法一:传统的递归形式(会有最大递归深度的限制,超时)
# 递归的方法,但是时间复杂度较高,需要使用一个dp数组记录重复操作的步骤
def minDistance(word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
if word1 == '':
return len(word2)
if word2 == '':
return len(word1)
if word1[-1] == word2[-1]:
return self.minDistance2(word1[:-1], word2[:-1])
else:
res = 1 + min(
self.minDistance2(word1[:-1], word2[:-1]),
self.minDistance2(word1, word2[:-1]),
self.minDistance2(word1[:-1], word2)
)
return res
- 解法二:动态规划,相当于空间换时间
class Solution(object):
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype: int
"""
n = len(word1)
m = len(word2)
dp = [[0 for j in range(m+1)] for i in range(n+1)]
for i in range(n+1):
for j in range(m+1):
if i == 0:
dp[i][j] = j
continue
if j == 0:
dp[i][j] = i
continue
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j - 1],
dp[i - 1][j],
dp[i][j - 1]) + 1
return dp[n][m]