我的url

2019-02-22  本文已影响0人  悠悠渔隐

回顾Facebook经典CTR预估模型 https://zhuanlan.zhihu.com/p/57987311

ctr 预估的paper 列表 https://github.com/wzhe06/Ad-papers

哥大应用机器学习资料放出,注重课程实践

https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10046295046462965896%22%7D&n_type=0&p_from=1

2018年学术顶会:深度学习的江山如此多娇

https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_9799727450709028972%22%7D&n_type=0&p_from=1

在线学习在点评搜索中的实践

http://mtmos.com/v1/mss_e03d26da0ff348159b2ce3b06352b918/mit-storage/01-%E6%9D%A8%E4%B8%80%E5%B8%86-%E6%8A%80%E6%9C%AF%E6%B2%99%E9%BE%99%E5%9C%A8%E7%BA%BF%E5%AD%A6%E4%B9%A0.78fa9840-d1ee-11e7-9ce9-07065b98cc2b.pdf?temp_url_sig=472202c406c4e52321c2bfeeb5c7b4d01c9e45d6&temp_url_expires=1632191265&inline=true

标签推荐

https://github.com/w5688414/deep-learning-for-tag-recommendation

借助TensorFlow在CTR预估中快速落地DNN

https://pic.huodongjia.com/ganhuodocs/2018-01-16/1516094349.07.pdf

选机器学习课程怕踩雷?有人帮你选出了top 5优质课

https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_9241777083908299381%22%7D&n_type=0&p_from=1

Liangjie Hong  商品排序

https://dblp.org/pers/hd/h/Hong:Liangjie

tensorflow如何正确加载预训练词向量

https://www.cnblogs.com/demo-deng/p/10248066.html

上一篇下一篇

猜你喜欢

热点阅读