算法题--二维矩阵顺时针旋转90度
2020-04-03 本文已影响0人
岁月如歌2020
image.png
0. 链接
1. 题目
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.
Example 1:
Given input matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
rotate the input matrix in-place such that it becomes:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
Example 2:
Given input matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
rotate the input matrix in-place such that it becomes:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
2. 思路1:先算转置, 再按行倒序
关于矩阵的旋转变换,
[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
]
变为
[
[7, 4, 1],
[8, 5, 3],
[9, 6, 3]
]
可以总结出:
a_{ij} -> a_{j(n-i+1)}
而可以看出它是两个动作的综合
- 转置
a_{ij} -> a_{ji}
[
[1, 4, 7],
[2, 5, 8],
[3, 6, 9]
]
- 每行倒序
a_{ji} -> a_{j(n-i+1)}
[
[7, 4, 1],
[8, 5, 3],
[9, 6, 3]
]
3. 代码
# coding:utf8
from typing import List
class Solution:
def rotate(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
n = len(matrix)
for i in range(n):
for j in range(i + 1, n):
matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
for i in range(n):
l = 0
r = n - 1
while l < r:
matrix[i][l], matrix[i][r] = matrix[i][r], matrix[i][l]
l += 1
r -= 1
solution = Solution()
matrix = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
]
solution.rotate(matrix)
print(matrix)
matrix = [
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
]
solution.rotate(matrix)
print(matrix)
输出结果
[[7, 4, 1], [8, 5, 2], [9, 6, 3]]
[[15, 13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7, 10, 11]]