不等式与不等式组教材回顾200520

2020-05-20  本文已影响0人  椰子数学

教材回顾之华师版

8.1认识不等式

像上面出现的120<135,120<5x那样用不等号“<”或“>”表示不等关系的式子,叫做不等式。(inequality)

不等式120<5x中含有未知数x,能使不等式成立的未知数的值,叫做不等式的解。

8.2 解一元一次不等式

1、不等式的解集

一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集。(solutiong set)

2、不等式的简单变形
不等式的性质1

如果a>b,那么a+c>b+c,a-c>b-c

不等式的性质2

如果a>b,并且c>0,那么ac>bc

不等式的性质3

如果a>b,并且c<0,那么ac<bc

3、解一元一次不等式

前面遇到的不等式有一个共同的特点:它们都只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,像这样的不等式叫做一元一次不等式。(linear inequalit with one unknown)

8.3一元一次不等式组

我们把这两个一元一次不等式合在一起,就得到一个一元一次不等式组。

不等式组解集

不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。

解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分,利用数轴可以直观地帮助到我们得到不等式组的解集。

教材回顾之人教版

9.1不等式

9.1.1不等式及其解集

像a>1和b<2这样用符号“<”或“>”或“≥”,“≤”,“≠”表示大小关系的式子,叫做不等式

与方程的解类似,我们把使不等式成立的未知数的值叫做不等式的解。

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式

9.1.2不等式的性质
不等式的性质1

不等式两边加(或减)同一个数(或式子)不等号的方向不变
如果a>b,那么a±c>b±c

不等式的性质2

不等式两边乘(或除以)同一个正数,不等号的方向不变。
如果a>b,c>0,那么ac>bc(或\frac{a}{c}>\frac {b}{c}

不等式的性质3

不等式两边乘(或除以同一个负数)不等号的方向改变。
如果a>b,c<0,那么ac<bc(或\frac{a}{c}<\frac {b}{c}

9.2一元一次不等式

可以发现,上述每个不等式都只含有一个未知数,并且未知数的次数是1,类似于一元一次方程,含有一个未知数未知数的次数是1的不等式,叫做一元一次不等式。

一般地,利用不等式的性质,采取与解一元一次方程相类似的步骤,就可以求出一元一次不等式的解集。

9.3一元一次不等式组

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。

重要思想:化归思想,即将一个问题由难化易,由繁化简,由复杂化简单的过程称为化归,它是转化和归结的简称。

上一篇下一篇

猜你喜欢

热点阅读