opencv+tensorflow+cnn实现人脸识别
2018-03-13 本文已影响13759人
少寨主的互联网洞察
训练“她”,让“她”认识我!
学习自@little_wang
原文地址:
1.获取我的人脸数据:
注意以下有一个引用库import cv2
为顺利找到依赖库函数,需要先安装库:
pip install opencv-python
- 使用opencv打开摄像头,获取人脸
- 对图像做一些预处理,如处理成64*64大小的图片
- 获取期间,做一些明暗处理,以增加图像的噪声干扰,使得训练出来的模型具备一定的泛化能力
- 共获取200张照片
#!/usr/bin/python
#coding=utf-8
''' face detect
https://github.com/seathiefwang/FaceRecognition-tensorflow
http://tumumu.cn/2017/05/02/deep-learning-face/
'''
# pylint: disable=invalid-name
import os
import random
import numpy as np
import cv2
def createdir(*args):
''' create dir'''
for item in args:
if not os.path.exists(item):
os.makedirs(item)
IMGSIZE = 64
def getpaddingSize(shape):
''' get size to make image to be a square rect '''
h, w = shape
longest = max(h, w)
result = (np.array([longest]*4, int) - np.array([h, h, w, w], int)) // 2
return result.tolist()
def dealwithimage(img, h=64, w=64):
''' dealwithimage '''
#img = cv2.imread(imgpath)
top, bottom, left, right = getpaddingSize(img.shape[0:2])
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0, 0, 0])
img = cv2.resize(img, (h, w))
return img
def relight(imgsrc, alpha=1, bias=0):
'''relight'''
imgsrc = imgsrc.astype(float)
imgsrc = imgsrc * alpha + bias
imgsrc[imgsrc < 0] = 0
imgsrc[imgsrc > 255] = 255
imgsrc = imgsrc.astype(np.uint8)
return imgsrc
def getfacefromcamera(outdir):
createdir(outdir)
camera = cv2.VideoCapture(0)
haar = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
n = 1
while 1:
if (n <= 200):
print('It`s processing %s image.' % n)
# 读帧
success, img = camera.read()
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = haar.detectMultiScale(gray_img, 1.3, 5)
for f_x, f_y, f_w, f_h in faces:
face = img[f_y:f_y+f_h, f_x:f_x+f_w]
face = cv2.resize(face, (IMGSIZE, IMGSIZE))
#could deal with face to train
face = relight(face, random.uniform(0.5, 1.5), random.randint(-50, 50))
cv2.imwrite(os.path.join(outdir, str(n)+'.jpg'), face)
cv2.putText(img, 'haha', (f_x, f_y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2) #显示名字
img = cv2.rectangle(img, (f_x, f_y), (f_x + f_w, f_y + f_h), (255, 0, 0), 2)
n+=1
cv2.imshow('img', img)
key = cv2.waitKey(30) & 0xff
if key == 27:
break
else:
break
camera.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
name = input('please input yourename: ')
getfacefromcamera(os.path.join('./image/trainfaces', name))
执行完以后效果是这样的(原谅我作了处理(-——-))
Inked捕获_LI.jpg
2.创建CNN网络:
#!/usr/bin/python
#coding=utf-8
''' face detect convolution'''
# pylint: disable=invalid-name
import os
import logging as log
import matplotlib.pyplot as plt
import common
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import cv2
SIZE = 64
x_data = tf.placeholder(tf.float32, [None, SIZE, SIZE, 3])
y_data = tf.placeholder(tf.float32, [None, None])
keep_prob_5 = tf.placeholder(tf.float32)
keep_prob_75 = tf.placeholder(tf.float32)
def weightVariable(shape):
''' build weight variable'''
init = tf.random_normal(shape, stddev=0.01)
#init = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(init)
def biasVariable(shape):
''' build bias variable'''
init = tf.random_normal(shape)
#init = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(init)
def conv2d(x, W):
''' conv2d by 1, 1, 1, 1'''
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def maxPool(x):
''' max pooling'''
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def dropout(x, keep):
''' drop out'''
return tf.nn.dropout(x, keep)
def cnnLayer(classnum):
''' create cnn layer'''
# 第一层
W1 = weightVariable([3, 3, 3, 32]) # 卷积核大小(3,3), 输入通道(3), 输出通道(32)
b1 = biasVariable([32])
conv1 = tf.nn.relu(conv2d(x_data, W1) + b1)
pool1 = maxPool(conv1)
# 减少过拟合,随机让某些权重不更新
drop1 = dropout(pool1, keep_prob_5) # 32 * 32 * 32 多个输入channel 被filter内积掉了
# 第二层
W2 = weightVariable([3, 3, 32, 64])
b2 = biasVariable([64])
conv2 = tf.nn.relu(conv2d(drop1, W2) + b2)
pool2 = maxPool(conv2)
drop2 = dropout(pool2, keep_prob_5) # 64 * 16 * 16
# 第三层
W3 = weightVariable([3, 3, 64, 64])
b3 = biasVariable([64])
conv3 = tf.nn.relu(conv2d(drop2, W3) + b3)
pool3 = maxPool(conv3)
drop3 = dropout(pool3, keep_prob_5) # 64 * 8 * 8
# 全连接层
Wf = weightVariable([8*16*32, 512])
bf = biasVariable([512])
drop3_flat = tf.reshape(drop3, [-1, 8*16*32])
dense = tf.nn.relu(tf.matmul(drop3_flat, Wf) + bf)
dropf = dropout(dense, keep_prob_75)
# 输出层
Wout = weightVariable([512, classnum])
bout = weightVariable([classnum])
#out = tf.matmul(dropf, Wout) + bout
out = tf.add(tf.matmul(dropf, Wout), bout)
return out
def train(train_x, train_y, tfsavepath):
''' train'''
log.debug('train')
out = cnnLayer(train_y.shape[1])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=y_data))
train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(y_data, 1)), tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
batch_size = 10
num_batch = len(train_x) // 10
for n in range(10):
r = np.random.permutation(len(train_x))
train_x = train_x[r, :]
train_y = train_y[r, :]
for i in range(num_batch):
batch_x = train_x[i*batch_size : (i+1)*batch_size]
batch_y = train_y[i*batch_size : (i+1)*batch_size]
_, loss = sess.run([train_step, cross_entropy],\
feed_dict={x_data:batch_x, y_data:batch_y,
keep_prob_5:0.75, keep_prob_75:0.75})
print(n*num_batch+i, loss)
# 获取测试数据的准确率
acc = accuracy.eval({x_data:train_x, y_data:train_y, keep_prob_5:1.0, keep_prob_75:1.0})
print('after 10 times run: accuracy is ', acc)
saver.save(sess, tfsavepath)
def validate(test_x, tfsavepath):
''' validate '''
output = cnnLayer(2)
#predict = tf.equal(tf.argmax(output, 1), tf.argmax(y_data, 1))
predict = output
saver = tf.train.Saver()
with tf.Session() as sess:
#sess.run(tf.global_variables_initializer())
saver.restore(sess, tfsavepath)
res = sess.run([predict, tf.argmax(output, 1)],
feed_dict={x_data: test_x,
keep_prob_5:1.0, keep_prob_75: 1.0})
return res
if __name__ == '__main__':
pass
使用tf创建3层cnn,3 * 3的filter,输入为rgb所以:
- 第一层的channel是3,图像宽高为64,输出32个filter,maxpooling是缩放一倍
- 第二层的输入为32个channel,宽高是32,输出为64个filter,maxpooling是缩放一倍
- 第三层的输入为64个channel,宽高是16,输出为64个filter,maxpooling是缩放一倍
所以最后输入的图像是8 * 8 * 64,卷积层和全连接层都设置了dropout参数
将输入的8 * 8 * 64的多维度,进行flatten,映射到512个数据上,然后进行softmax,输出到onehot类别上,类别的输入根据采集的人员的个数来确定。
3.识别人脸分类
def getfileandlabel(filedir):
''' get path and host paire and class index to name'''
dictdir = dict([[name, os.path.join(filedir, name)] \
for name in os.listdir(filedir) if os.path.isdir(os.path.join(filedir, name))])
#for (path, dirnames, _) in os.walk(filedir) for dirname in dirnames])
dirnamelist, dirpathlist = dictdir.keys(), dictdir.values()
indexlist = list(range(len(dirnamelist)))
return list(zip(dirpathlist, onehot(indexlist))), dict(zip(indexlist, dirnamelist))
pathlabelpair, indextoname = getfileandlabel('./image/trainfaces')
train_x, train_y = readimage(pathlabelpair)
train_x = train_x.astype(np.float32) / 255.0
myconv.train(train_x, train_y, savepath)
- 将人脸从子目录内读出来,根据不同的人名,分配不同的onehot值,这里是按照遍历的顺序分配序号,然后训练,完成之后会保存checkpoint
- 图像识别之前将像素值转换为0到1的范围
- 需要多次训练的话,把checkpoint下面的上次训练结果删除,代码有个判断,有上一次的训练结果,就不会再训练了
4.识别图像
def testfromcamera(chkpoint):
camera = cv2.VideoCapture(0)
haar = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
pathlabelpair, indextoname = getfileandlabel('./image/trainfaces')
output = myconv.cnnLayer(len(pathlabelpair))
#predict = tf.equal(tf.argmax(output, 1), tf.argmax(y_data, 1))
predict = output
saver = tf.train.Saver()
with tf.Session() as sess:
#sess.run(tf.global_variables_initializer())
saver.restore(sess, chkpoint)
n = 1
while 1:
if (n <= 20000):
print('It`s processing %s image.' % n)
# 读帧
success, img = camera.read()
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = haar.detectMultiScale(gray_img, 1.3, 5)
for f_x, f_y, f_w, f_h in faces:
face = img[f_y:f_y+f_h, f_x:f_x+f_w]
face = cv2.resize(face, (IMGSIZE, IMGSIZE))
#could deal with face to train
test_x = np.array([face])
test_x = test_x.astype(np.float32) / 255.0
res = sess.run([predict, tf.argmax(output, 1)],\
feed_dict={myconv.x_data: test_x,\
myconv.keep_prob_5:1.0, myconv.keep_prob_75: 1.0})
print(res)
cv2.putText(img, indextoname[res[1][0]], (f_x, f_y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2) #显示名字
img = cv2.rectangle(img, (f_x, f_y), (f_x + f_w, f_y + f_h), (255, 0, 0), 2)
n+=1
cv2.imshow('img', img)
key = cv2.waitKey(30) & 0xff
if key == 27:
break
else:
break
camera.release()
cv2.destroyAllWindows()
- 从训练的结果中恢复训练识别的参数,然后用于新的识别判断
- 打开摄像头,采集到图片之后,进行人脸检测,检测出来之后,进行人脸识别,根据结果对应到人员名字,显示在图片中人脸的上面