RDD、DataFrame、Dataset
RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换
DataFrame/Dataset转RDD:
这个转换很简单
val rdd1=testDF.rdd
val rdd2=testDS.rdd
RDD转DataFrame:
import spark.implicits._
val testDF = rdd.map {line=>
(line._1,line._2)
}.toDF("col1","col2")
一般用元组把一行的数据写在一起,然后在toDF中指定字段名
RDD转Dataset:
import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = rdd.map {line=>
Coltest(line._1,line._2)
}.toDS
可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可
Dataset转DataFrame:
这个也很简单,因为只是把case class封装成Row
import spark.implicits._
val testDF = testDS.toDF
DataFrame转Dataset:
import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = testDF.as[Coltest]
这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便