pandas 日期类型的 freq

2020-09-02  本文已影响0人  butters001
freq 描述
Y
M
D 日(默认)
T(MIN) 分钟
S
L 毫秒
U 微秒
A-DEC 每年指定月份的最后一个日历日
W-MON 指定每月的哪个星期开始
WOM_2MON 指定每个月的第几个星期(这里是第二个星期)
Q-DEC(Q-月) 指定月为季度末,每个季度末最后一月的最后一个日历日
B,(M,Q,A),S 分别代表了工作日,(以月为频率,以季度为频率,以年为频率),最接近月初的那一天
B 工作日
In [9]: pd.date_range("2018/01/01", "2019/01/01", freq="Y")                                                                                   
Out[9]: DatetimeIndex(['2018-12-31'], dtype='datetime64[ns]', freq='A-DEC')


In [10]: pd.date_range("2018/01/01", "2019/01/01", freq="M")                                                                                  
Out[10]: 
DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',
               '2018-05-31', '2018-06-30', '2018-07-31', '2018-08-31',
               '2018-09-30', '2018-10-31', '2018-11-30', '2018-12-31'],
              dtype='datetime64[ns]', freq='M')


In [13]: pd.date_range("2018/01/01", "2018/01/10", freq="D")                                                                                  
Out[13]: 
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08',
               '2018-01-09', '2018-01-10'],
              dtype='datetime64[ns]', freq='D')


In [16]: pd.date_range("2018/01/01 00:00:00", "2018/01/01 00:10:00", freq="T")                                                                
Out[16]: 
DatetimeIndex(['2018-01-01 00:00:00', '2018-01-01 00:01:00',
               '2018-01-01 00:02:00', '2018-01-01 00:03:00',
               '2018-01-01 00:04:00', '2018-01-01 00:05:00',
               '2018-01-01 00:06:00', '2018-01-01 00:07:00',
               '2018-01-01 00:08:00', '2018-01-01 00:09:00',
               '2018-01-01 00:10:00'],
              dtype='datetime64[ns]', freq='T')


In [17]: pd.date_range("2018/01/01 00:00:00", "2018/01/01 00:00:10", freq="S")                                                                
Out[17]: 
DatetimeIndex(['2018-01-01 00:00:00', '2018-01-01 00:00:01',
               '2018-01-01 00:00:02', '2018-01-01 00:00:03',
               '2018-01-01 00:00:04', '2018-01-01 00:00:05',
               '2018-01-01 00:00:06', '2018-01-01 00:00:07',
               '2018-01-01 00:00:08', '2018-01-01 00:00:09',
               '2018-01-01 00:00:10'],
              dtype='datetime64[ns]', freq='S')


In [21]: pd.date_range("2018/01/01", "2022/01/01", freq="A-OCT")                                                                              
Out[21]: DatetimeIndex(['2018-10-31', '2019-10-31', '2020-10-31', '2021-10-31'], dtype='datetime64[ns]', freq='A-OCT')


In [27]: pd.date_range("2018/01/01", "2019/01/01", freq="W-MON")                                                                              
Out[27]: 
DatetimeIndex(['2018-01-01', '2018-01-08', '2018-01-15', '2018-01-22',
               '2018-01-29', '2018-02-05', '2018-02-12', '2018-02-19',
               '2018-02-26', '2018-03-05', '2018-03-12', '2018-03-19',
               '2018-03-26', '2018-04-02', '2018-04-09', '2018-04-16',
               '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14',
               '2018-05-21', '2018-05-28', '2018-06-04', '2018-06-11',
               '2018-06-18', '2018-06-25', '2018-07-02', '2018-07-09',
               '2018-07-16', '2018-07-23', '2018-07-30', '2018-08-06',
               '2018-08-13', '2018-08-20', '2018-08-27', '2018-09-03',
               '2018-09-10', '2018-09-17', '2018-09-24', '2018-10-01',
               '2018-10-08', '2018-10-15', '2018-10-22', '2018-10-29',
               '2018-11-05', '2018-11-12', '2018-11-19', '2018-11-26',
               '2018-12-03', '2018-12-10', '2018-12-17', '2018-12-24',
               '2018-12-31'],
              dtype='datetime64[ns]', freq='W-MON')


In [29]: pd.date_range("2018/01/01", "2019/01/01", freq="WOM-2MON")                                                                           
Out[29]: 
DatetimeIndex(['2018-01-08', '2018-02-12', '2018-03-12', '2018-04-09',
               '2018-05-14', '2018-06-11', '2018-07-09', '2018-08-13',
               '2018-09-10', '2018-10-08', '2018-11-12', '2018-12-10'],
              dtype='datetime64[ns]', freq='WOM-2MON')


In [30]: pd.date_range("2018/01/01", "2019/01/01", freq="Q-DEC")                                                                              
Out[30]: DatetimeIndex(['2018-03-31', '2018-06-30', '2018-09-30', '2018-12-31'], dtype='datetime64[ns]', freq='Q-DEC')


In [31]: pd.date_range("2018/01/01", "2019/01/01", freq="Q-OCT")                                                                              
Out[31]: DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31'], dtype='datetime64[ns]', freq='Q-OCT')


In [32]: pd.date_range("2018/01/01", "2019/01/01", freq="BAS")                                                                                
Out[32]: DatetimeIndex(['2018-01-01', '2019-01-01'], dtype='datetime64[ns]', freq='BAS-JAN')


In [34]: pd.date_range("2018/01/01", "2019/01/01", freq="BQS")                                                                                
Out[34]: 
DatetimeIndex(['2018-01-01', '2018-04-02', '2018-07-02', '2018-10-01',
               '2019-01-01'],
              dtype='datetime64[ns]', freq='BQS-JAN')


In [33]: pd.date_range("2018/01/01", "2019/01/01", freq="BMS")                                                                                
Out[33]: 
DatetimeIndex(['2018-01-01', '2018-02-01', '2018-03-01', '2018-04-02',
               '2018-05-01', '2018-06-01', '2018-07-02', '2018-08-01',
               '2018-09-03', '2018-10-01', '2018-11-01', '2018-12-03',
               '2019-01-01'],
              dtype='datetime64[ns]', freq='BMS')


In [35]: pd.date_range("2018/01/01", "2019/02/01", freq="B")                                                                                  
Out[35]: 
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-08', '2018-01-09', '2018-01-10',
               '2018-01-11', '2018-01-12',
               ...
               '2019-01-21', '2019-01-22', '2019-01-23', '2019-01-24',
               '2019-01-25', '2019-01-28', '2019-01-29', '2019-01-30',
               '2019-01-31', '2019-02-01'],
              dtype='datetime64[ns]', length=285, freq='B')
上一篇下一篇

猜你喜欢

热点阅读