剑指Offer——二叉搜索树与双向链表

2019-05-03  本文已影响0人  Mereder

题目描述

输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。

解题思路

二叉搜索树的中序遍历,就是二叉搜索树的顺序排序。

二叉树的中序遍历,实际上分为了3个部分,左子树,根,右子树。当遍历完左子树时,左子树已经是一个排好序的链表了,并且链表中的最后一个结点,是当前的最大值。只需要将根节点跟链表最后一个结点链接起来。然后再去遍历转换右子树。对于树,递归方式是优先考虑的。

上述方法中,需要维护一个 结点,始终表示已经转换链表的最后一个结点。

题解

此处给出牛客网上的高票答案,并且配有注释。

引用:牛客网用户:nailperry

方法一:非递归版
解题思路:
1.核心是中序遍历的非递归算法。
2.修改当前遍历节点与前一遍历节点的指针指向。
    import java.util.Stack;
    public TreeNode ConvertBSTToBiList(TreeNode root) {
        if(root==null)
            return null;
        Stack<TreeNode> stack = new Stack<TreeNode>();
        TreeNode p = root;
        TreeNode pre = null;// 用于保存中序遍历序列的上一节点
        boolean isFirst = true;
        while(p!=null||!stack.isEmpty()){
            while(p!=null){
                stack.push(p);
                p = p.left;
            }
            p = stack.pop();
            if(isFirst){
                root = p;// 将中序遍历序列中的第一个节点记为root
                pre = root;
                isFirst = false;
            }else{
                pre.right = p;
                p.left = pre;
                pre = p;
            }      
            p = p.right;
        }
        return root;
    }
方法二:递归版
解题思路:
1.将左子树构造成双链表,并返回链表头节点。
2.定位至左子树双链表最后一个节点。
3.如果左子树链表不为空的话,将当前root追加到左子树链表。
4.将右子树构造成双链表,并返回链表头节点。
5.如果右子树链表不为空的话,将该链表追加到root节点之后。
6.根据左子树链表是否为空确定返回的节点。
    public TreeNode Convert(TreeNode root) {
        if(root==null)
            return null;
        if(root.left==null&&root.right==null)
            return root;
        // 1.将左子树构造成双链表,并返回链表头节点
        TreeNode left = Convert(root.left);
        TreeNode p = left;
        // 2.定位至左子树双链表最后一个节点
        while(p!=null&&p.right!=null){
            p = p.right;
        }
        // 3.如果左子树链表不为空的话,将当前root追加到左子树链表
        if(left!=null){
            p.right = root;
            root.left = p;
        }
        // 4.将右子树构造成双链表,并返回链表头节点
        TreeNode right = Convert(root.right);
        // 5.如果右子树链表不为空的话,将该链表追加到root节点之后
        if(right!=null){
            right.left = root;
            root.right = right;
        }
        return left!=null?left:root;       
    }
方法三:改进递归版
解题思路:
思路与方法二中的递归版一致,仅对第2点中的定位作了修改,新增一个全局变量记录左子树的最后一个节点。
    // 记录子树链表的最后一个节点,终结点只可能为只含左子树的非叶节点与叶节点
    protected TreeNode leftLast = null;
    public TreeNode Convert(TreeNode root) {
        if(root==null)
            return null;
        if(root.left==null&&root.right==null){
            leftLast = root;// 最后的一个节点可能为最右侧的叶节点
            return root;
        }
        // 1.将左子树构造成双链表,并返回链表头节点
        TreeNode left = Convert(root.left);
        // 3.如果左子树链表不为空的话,将当前root追加到左子树链表
        if(left!=null){
            leftLast.right = root;
            root.left = leftLast;
        }
        leftLast = root;// 当根节点只含左子树时,则该根节点为最后一个节点
        // 4.将右子树构造成双链表,并返回链表头节点
        TreeNode right = Convert(root.right);
        // 5.如果右子树链表不为空的话,将该链表追加到root节点之后
        if(right!=null){
            right.left = root;
            root.right = right;
        }
        return left!=null?left:root;       
    }

上一篇下一篇

猜你喜欢

热点阅读