我爱编程

Modular

2018-04-08  本文已影响0人  LiuleLaile

# -*- coding: utf-8 -*-

"""

Created on %(date)s

@author: %(username)s

"""

"""

读取文件路径

方法:

1 利用cmd命令把所有目标文件路径写入文件, dir /b/s >filepath.txt,再删掉filepath.txt中包含的filepath.txt自己的路径

2 利用python的open和readlines完成

"""

target = open(r'C:\finance\filepath.txt')

filelist = target.readlines();

#print(filelist[0])

#print(type(filelist))

stockFilePath = filelist[455][:-1]

#这里文件路径都含有换行符,用[:-1]去掉换行符

stockFile = open(stockFilePath)

#print(stockFilePath)

stockData = stockFile.readline()

#第一行数据为列说明,略去不读

stockData = stockFile.readlines()

#print(stockData[0])

date_array = []

open_array = []

high_array = []

close_array = []

low_array = []

volume_array = []

amount_array = []

"""

下面定义一个取出数据的函数

"""

def dataInit(date_array=date_array, open_array=open_array, high_array=high_array, close_array=close_array,

            low_array=low_array, volume_array=volume_array, amount_array=amount_array):

    date_array = []

    open_array = []

    high_array = []

    close_array = []

    low_array = []

    volume_array = []

    amount_array = []

def dataGot(stockData=stockData, date_array=date_array, open_array=open_array, high_array=high_array, close_array=close_array,

              low_array=low_array, volume_array=volume_array, amount_array=amount_array):

    dataInit()

    for data in stockData:

        tmp = data[:-1].split(',')

        date_array.append(tmp[0])

        open_array.append(tmp[1])

        high_array.append(tmp[2])

        close_array.append(tmp[3])

        low_array.append(tmp[4])

        volume_array.append(tmp[5])

        amount_array.append(tmp[6])

    date_array.reverse()

    open_array.reverse()

    high_array.reverse()

    close_array.reverse()

    low_array.reverse()

    volume_array.reverse()

    amount_array.reverse()

dataGot()

#print(date_array[-1])

from collections import namedtuple,OrderedDict

from functools import reduce

class StockTradeDays(object):

    def __init__(self, date_array=date_array, open_array=open_array, high_array=high_array, close_array=close_array,

                low_array=low_array, volume_array=volume_array, amount_array=amount_array):

        self.__date_array = date_array

        self.__open_array = open_array

        self.__high_array = high_array

        self.__close_array = close_array

        self.__low_array = low_array

        self.__volume_array = volume_array

        self.__amount_array = amount_array

        self.__change_array = self.__init_change()

        self.stock_dict = self._init_stock_dict()

    def __init_change(self):

        price_float_array =[float(price_str) for price_str in self.__close_array]

        pp_array = [(p1,p2) for p1, p2 in zip(price_float_array[:-1], price_float_array[1:])]

        change_array = list(map(lambda pp: reduce(lambda a, b:round((b - a) / a, 3), pp), pp_array))

        change_array.insert(0,0)

        return change_array

    def _init_stock_dict(self):

        stock_namedtuple = namedtuple('stock',('date','open','high','close','low','volume','amount','change'))

        stock_dict = OrderedDict((date,stock_namedtuple(date,openprice,high,close,low,volume,amount,change))

        for date,openprice,high,close,low,volume,amount,change in

        zip(self.__date_array, self.__open_array, self.__high_array, self.__close_array, self.__low_array, self.__volume_array, self.__amount_array,

            self.__change_array))

        return stock_dict

    def __str__(self):

        return str(self.stock_dict)

    __repr__ = __str__

    def __iter__(self):

        for key in self.stock_dict:

            yield self.stock_dict[key]

    def __getitem__(self, ind):

        date_key = self.__date_array[ind]

        return self.stock_dict[date_key]

    def __len__(self):

        return len(self.stock_dict)

stock1 = StockTradeDays()

#for ind, day in enumerate(stock1):

#    if ind < 10:

#        print(day)

#    else:

#        break

import six

from abc import ABCMeta, abstractmethod

class TradeStrategyBase(six.with_metaclass(ABCMeta, object)):

    """

    交易策略抽象基类

    """

    @abstractmethod

    def buy_strategy(self, *args, **kwargs):

        pass

    @abstractmethod

    def sell_strategy(self, *args, **kwargs):

        pass

class TradeStrategy1(TradeStrategyBase):

    s_keep_stock_threshold = 20

    def __init__(self):

        self.keep_stock_day = 0

        self.__buy_change_threshold = 0.07

    def buy_strategy(self, trade_ind, trade_day, trade_days):

        if self.keep_stock_day == 0 and \

        trade_day.change > self.__buy_change_threshold:

            self.keep_stock_day +=1

        elif self.keep_stock_day >0:

            self.keep_stock_day += 1

    def sell_strategy(self, trade_ind, trade_day, trade_days):

        if self.keep_stock_day >=\

        TradeStrategy1.s_keep_stock_threshold:

            self.keep_stock_day = 0

    @property

    def buy_change_threshold(self):

        return self.__buy_change_threshold

    @buy_change_threshold.setter

    def buy_change_threshold(self, buy_change_threshold):

        if not isinstance(buy_change_threshold, float):

            raise TypeError('buy_change_threshold must be float')

        self.__buy_change_threshold = round(buy_change_threshold, 2)

class TradeLoopBack(object):

    def __init__(self, trade_days, trade_strategy):

        self.trade_days = trade_days

        self.trade_strategy = trade_strategy

        self.profit_array = []

    def execute_trade(self):

        for ind, day in enumerate(self.trade_days):

            if self.trade_strategy.keep_stock_day > 0:

                self.profit_array.append(day.change)

            if hasattr(self.trade_strategy, 'buy_strategy'):

                self.trade_strategy.buy_strategy(ind, day, self.trade_days)

            if hasattr(self.trade_strategy, 'sell_strategy'):

                self.trade_strategy.sell_strategy(ind, day, self.trade_days)

trade_loop_back = TradeLoopBack(stock1, TradeStrategy1())

trade_loop_back.execute_trade()

print ('回测策略1 总盈亏为:{}%'.format(

        reduce(lambda a, b:a+b, trade_loop_back.profit_array) * 100))

import numpy as np

import matplotlib.pyplot as plt

plt.plot(np.array(trade_loop_back.profit_array).cumsum())

上一篇下一篇

猜你喜欢

热点阅读