hash表--散列表

2019-10-23  本文已影响0人  斌斌爱学习

大厂之路的第五篇 HashMap(散列表)

前面几篇我们介绍了两种线性表:顺序表和链表。这两种线性表它们各有优缺点:顺序表适合随机查找比较多的场景,而链表适合与需要频繁插入删除的场景。
那么,有没有一种集合查找也快插入删除也没那么耗时呢?答案是肯定的,它就是我们今天要介绍的 散列表 也称 哈希表

HashMap是如何做到查找也快插入删除也快的呢?
老样子,我们还是到源码里面去一探究竟。

我们先看一下它的put方法:

public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

我们不难发现,这个函数里面又一个很重要的结构--Node<K,V>,我们在分析LinkedList的源码过程中也有这么一个Node,不同的地方在于在HashMap中这个Node是以key,value即键值对的形式存在的。

ok,那我们重点来看一下Node这个内部类。

 static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

 interface Entry<K,V> {
        /**
         * Returns the key corresponding to this entry.
         *
         * @return the key corresponding to this entry
         * @throws IllegalStateException implementations may, but are not
         *         required to, throw this exception if the entry has been
         *         removed from the backing map.
         */
        K getKey();

        /**
         * Returns the value corresponding to this entry.  If the mapping
         * has been removed from the backing map (by the iterator's
         * <tt>remove</tt> operation), the results of this call are undefined.
         *
         * @return the value corresponding to this entry
         * @throws IllegalStateException implementations may, but are not
         *         required to, throw this exception if the entry has been
         *         removed from the backing map.
         */
        V getValue();

        /**
         * Replaces the value corresponding to this entry with the specified
         * value (optional operation).  (Writes through to the map.)  The
         * behavior of this call is undefined if the mapping has already been
         * removed from the map (by the iterator's <tt>remove</tt> operation).
         *
         * @param value new value to be stored in this entry
         * @return old value corresponding to the entry
         * @throws UnsupportedOperationException if the <tt>put</tt> operation
         *         is not supported by the backing map
         * @throws ClassCastException if the class of the specified value
         *         prevents it from being stored in the backing map
         * @throws NullPointerException if the backing map does not permit
         *         null values, and the specified value is null
         * @throws IllegalArgumentException if some property of this value
         *         prevents it from being stored in the backing map
         * @throws IllegalStateException implementations may, but are not
         *         required to, throw this exception if the entry has been
         *         removed from the backing map.
         */
        V setValue(V value);

        /**
         * Compares the specified object with this entry for equality.
         * Returns <tt>true</tt> if the given object is also a map entry and
         * the two entries represent the same mapping.  More formally, two
         * entries <tt>e1</tt> and <tt>e2</tt> represent the same mapping
         * if<pre>
         *     (e1.getKey()==null ?
         *      e2.getKey()==null : e1.getKey().equals(e2.getKey()))  &amp;&amp;
         *     (e1.getValue()==null ?
         *      e2.getValue()==null : e1.getValue().equals(e2.getValue()))
         * </pre>
         * This ensures that the <tt>equals</tt> method works properly across
         * different implementations of the <tt>Map.Entry</tt> interface.
         *
         * @param o object to be compared for equality with this map entry
         * @return <tt>true</tt> if the specified object is equal to this map
         *         entry
         */
        boolean equals(Object o);

        /**
         * Returns the hash code value for this map entry.  The hash code
         * of a map entry <tt>e</tt> is defined to be: <pre>
         *     (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
         *     (e.getValue()==null ? 0 : e.getValue().hashCode())
         * </pre>
         * This ensures that <tt>e1.equals(e2)</tt> implies that
         * <tt>e1.hashCode()==e2.hashCode()</tt> for any two Entries
         * <tt>e1</tt> and <tt>e2</tt>, as required by the general
         * contract of <tt>Object.hashCode</tt>.
         *
         * @return the hash code value for this map entry
         * @see Object#hashCode()
         * @see Object#equals(Object)
         * @see #equals(Object)
         */
        int hashCode();

        /**
         * Returns a comparator that compares {@link Map.Entry} in natural order on key.
         *
         * <p>The returned comparator is serializable and throws {@link
         * NullPointerException} when comparing an entry with a null key.
         *
         * @param  <K> the {@link Comparable} type of then map keys
         * @param  <V> the type of the map values
         * @return a comparator that compares {@link Map.Entry} in natural order on key.
         * @see Comparable
         * @since 1.8
         */
        public static <K extends Comparable<? super K>, V> Comparator<Map.Entry<K,V>> comparingByKey() {
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> c1.getKey().compareTo(c2.getKey());
        }

        /**
         * Returns a comparator that compares {@link Map.Entry} in natural order on value.
         *
         * <p>The returned comparator is serializable and throws {@link
         * NullPointerException} when comparing an entry with null values.
         *
         * @param <K> the type of the map keys
         * @param <V> the {@link Comparable} type of the map values
         * @return a comparator that compares {@link Map.Entry} in natural order on value.
         * @see Comparable
         * @since 1.8
         */
        public static <K, V extends Comparable<? super V>> Comparator<Map.Entry<K,V>> comparingByValue() {
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> c1.getValue().compareTo(c2.getValue());
        }

        /**
         * Returns a comparator that compares {@link Map.Entry} by key using the given
         * {@link Comparator}.
         *
         * <p>The returned comparator is serializable if the specified comparator
         * is also serializable.
         *
         * @param  <K> the type of the map keys
         * @param  <V> the type of the map values
         * @param  cmp the key {@link Comparator}
         * @return a comparator that compares {@link Map.Entry} by the key.
         * @since 1.8
         */
        public static <K, V> Comparator<Map.Entry<K, V>> comparingByKey(Comparator<? super K> cmp) {
            Objects.requireNonNull(cmp);
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> cmp.compare(c1.getKey(), c2.getKey());
        }

        /**
         * Returns a comparator that compares {@link Map.Entry} by value using the given
         * {@link Comparator}.
         *
         * <p>The returned comparator is serializable if the specified comparator
         * is also serializable.
         *
         * @param  <K> the type of the map keys
         * @param  <V> the type of the map values
         * @param  cmp the value {@link Comparator}
         * @return a comparator that compares {@link Map.Entry} by the value.
         * @since 1.8
         */
        public static <K, V> Comparator<Map.Entry<K, V>> comparingByValue(Comparator<? super V> cmp) {
            Objects.requireNonNull(cmp);
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> cmp.compare(c1.getValue(), c2.getValue());
        }
    }

可以看出,主要的数据操作还是对这个Node的操作。

在分析HashMap的几个重要函数之前,我想先给大家介绍一下HashMap存储数据的主要形式,也就是说它的数据结构到底是怎样的。
下面这张图可以大概说明。为什么说是大概说明,因为在java8中HashMap引入了红黑树来取代链表。

hash表

现在我们再深入的探究HashMap的几个重要函数:

1.构造函数

public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

在前三个构造函数中,主要是对HashMap两个重要的参数进行赋值。
一个是loadFactor:扩容因子,要求要小于1大于0,当容量达到阈值时,就需要对哈希表进行扩容,而这个阈值就是由当前容量和扩容因子共同决定的。
另一个是initialCapacity:即哈希表的初始容量。

我们看一下第三个构造函数中,有这么一行代码

this.threshold = tableSizeFor(initialCapacity);

我们仔细来看一下tableSizeFor这个函数:

 static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

关于这个算法的解释,可以参考这篇文章,在这里我们就不重复的去做解释了。
接下来我们重点看第四个构造函数:

public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

主要是看putMapEntries这个函数,先判断哈希表的大小是不是大于0,然后再判断table是不是为空,也就是我们的哈希表内有没有元素。如果是空的,那么还得像前面那三个构造函数一样先对必要的参数赋值;如果不为空判断要添加的哈希表的size是否达到了扩容阈值,如果达到了,就需要对哈希表进行扩容,也就是走resize函数。

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

resize这个函数很重要,所以我们一行一行的来分析它。
首先,先判断旧的哈希表是否为空:如果不为空,根据原来的大小确定是否需要扩容,如果需要扩容的话则是将扩容阈值扩大到之前的2倍。如果为空,判断旧的扩容阈值是否大于0。如果大于0,则将其赋给新的哈希表容量;否则,新的哈希表容量则为默认容量即16,扩容阈值则为16*0.75即12.

第二步,经过上一轮赋值过后,判断新的扩容阈值是否等于0。如果等于0,则对新的扩容阈值进行赋值。最终也就确定的新的扩容阈值。

第三步,根据新的容量创建一个新的数组newTab,判断以前的哈希表中的table数组是否为空,如果不为空,对扩容前的哈希表的table进行遍历,
然后对table中每一个链表进行遍历。简单来说就是:遍历hashmap每个bucket里的链表,每个链表可能会被拆分成两个链表,不需要移动的元素置入loHead为首的链表,需要移动的元素置入hiHead为首的链表,然后分别分配给老的buket和新的buket。

上面就是整个resize或者叫rehash的过程,可能理解起来会比较困难,需要反复的去思考去验证。

resize的过程主要是两步,一步是扩容,一步是对扩容前的hash表的数据重新摆放位置的过程。

在resize之后,还要将即将添加的数据加入到新的哈希表当中去。主要是调用putVal这个函数。

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

这个函数也很重要,我们还是一行一行的来解读它。
第一个if语句,判断添加前哈希表是否为空,如果为空则需要走一个resize的过程,上面我们已经分析过了。
第二步,计算hash并判断对应位置上是否有值,如果没有值则直接将新的Node存入指定位置;如果有值:1.判断key和hash是否相同,如果相同的话则将说明已经存在了指定的key,只需要更新对应value就行了。2.判断对应节点是不是红黑树,如果是红黑树则调用红黑树的对应方法(这一点咱们暂时带过,后面我们会单独分析红黑树的数据结构)3.如果以上两者都不满足,则遍历bucket对应的链表,要么找到对应的key,只需要更新value;要么找不到,则将数据添加入链表尾部。

以上两个函数是HashMap中最重要的两个函数,理解了这两个函数,那HashMap 其实也就理解的差不多了。

总结一下,HashMap主要的两个函数:resize和putval。
对于一个集合来说,最重要的操作就是增删改查。而在HashMap中,这几个操作必要的步骤都是先通过hash寻找到其在数组的位置,然后对比key和hash来找到对应的值。这个就是HashMap的关键。

所以,为什么说HashMap结合了顺序表和链表的缺点呢,因为它将顺序表的数组存储和链表的链式存储相结合,所以就具有了这两者的优点。

今天就分析到这了,晚安各位~~~

上一篇下一篇

猜你喜欢

热点阅读