微服务分布式系统CAP理论与数据一致性抉择

2023-08-01  本文已影响0人  风间影月

分布式系统

我们知道分布式系统就是一个系统由多个组成部分共同构成,用户的一个请求可能会经过多个不同的计算机节点之后,通过运算才会把结果响应给用户,那么这个请求所经过的不同的几个系统就是分布式系统。对于用户来讲,你是不是分布式系统,对他来讲是透明的。参考如下图:


image.png

图中就表示一个用户在经历下单过程会经过多个系统,他们是分布式的,共同组成一个整体。

CAP 概念

在分布式系统中,必定会遇到CAP,如下:

image.png

CAP 无法同时满足

如果从理论上来讲,以上三点C/A/P都应该满足吧,但是系统是人开发的,那肯定会或多或少有各种各样的问题。在分布式系统中同时满足这三点是不可能的。所以对于CAP来讲,只能满足其中两者,要么AP,要么CP,要么CA。如下图:


image.png

为什么会这样呢?我们举一个例子,来看一下CAP能不能同时满足,如下图:


image.png

上图中,ABCDE这5个节点都是分别部署在不同地域的机房的节点,假设现在我们的分区容错性P做的很好,保证不会出现网络方面的故障,这个时候我们来看一下一致性C和可用性A。现在有一个请求把数据写入到了A节点,随后用户的下一个请求要访问B节点,那么由于他们之间在不同的地域,数据同步需要有时间延迟,可能几百毫秒可能1-2秒。那么读请求要请求到一致的数据,就会被阻塞,阻塞的时候当前这个系统就不可用了,因为数据同步需要时间,所以此时的可用性A就无法满足,只能满足CP;那么再来看,假设要满足系统可用性,那么请求读到的数据,在节点同步的过程中就会是一个老的数据,数据就不能达到一致性C,所以这个时候就是AP。OK不?那么我们平时开发系统倒是在C和A之间取其一来搭配P的

组合搭配

那么 CP,AP,CA,这三种,哪个好呢?

对于我们平时开发的时候,分区容错P是一定要满足的,因为我们在部署的时候往往都都是多节点集群部署,设置异地互备,比如北京机房和上海机房都提供服务 ,所以,一定要容错。

那么接下来我们要抉择一致性还是可用性呢?
一般来说,往往我们在大家网站架构的时候,我们都会采用AP,主流的互联网公司也是如此,也就是数据的弱一致性,因为要保证系统的整体的高可用性以及容错性。啥叫弱一致性,比如我们经常看头条,头条的点赞数评论数或者微博粉丝数,具体的数值每个人浏览的时候可能不一样,这个其实无所谓的,这就是弱一致性。而像Redis啊MongoDB这样的中间件,是CP,也就是要保证数据的一致性,因为毕竟要为网站提供数据服务的,一致性必须满足。

关于弱一致性

其实现在的互联网环境里,很多项目都不会采用强一致性,因为很难做,而往往采用弱一致性,因为用户可以接受。比如双11或者618的时候,订单蹭蹭蹭的海量增加,我们只需要关注订单下单成功就行,具体多少订单,具体多少金额,我们不会去实时的统计计算的,因为没必要,会在高峰期过后逐步去统计,慢慢的实现一致性。那么这个就是目前主流的做法。

但是一定要注意,数据层面的交互,关系型数据库,redis,mongodb等,他们肯定是强一致性,因为需要提供给你的网站数据服务。

数据的弱一致性

在保证数据库和缓存一致的情况之下,静态页面中的数据比如用户昵称可能会和后端数据库不一致,这是弱一致性的表现,如果要保证强一致性,则每个页面都必须和后端交互,但是如果有并发请求导致后端压力过大可能会导致这个接口所在的服务直接挂掉,如此一来系统不可用。
如果弱一致性,那么后端接口不会有那么大的压力,但是一致性会延后。以目前的互联网情况来讲,都是必须保证系统可用的前提下再去更新数据的一致性,在超高并发下,哪怕有脏数据,也要保证系统可用。这一点必须熟知。
以电商平台为例,首页的一些交易数据,比如商品销售数量,这个就是弱一致性的体现。
或者再按照某些系统来讲,用户信息修改以后,需要重新登录才会达到数据有效,这是让用户自己去做一次一致性,而不是让系统来自动做一致性。所以,很多场景下都是如此,都是先保可用性,再谈一致性。

上一篇 下一篇

猜你喜欢

热点阅读