第二周/第一节练习项目: 在 MongoDB 中筛选房源

2016-07-05  本文已影响169人  uvscjh

1.

标题 说明
网址 http://sh.xiaozhu.com/search-duanzufang-p1-0/
要求1 爬取前3页的数据并存储到mongodb中
要求2 从mogodb中筛选房价大于500元的房源并打印出来
Paste_Image.png Paste_Image.png

2. 分析

3. 实现

# vim spider_xiaozhu.py

代码

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
                                                                                                                             
__author__ = 'jhw'


# 导入连接mongodb的库
from pymongo import MongoClient
from bs4 import BeautifulSoup
import requests


# 连接mongodb
client = MongoClient('10.66.17.17', 27017)
# 选择数据库
database = client['xiaozhu']
# 选择collection
item_info = database['item_info_sh']

headers = { 
    'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.106 Safari/537.36'
}


# 定义获取房屋链接的函数
def get_url_from():

    url_list = []
    urls = ['http://sh.xiaozhu.com/search-duanzufang-p{}-0/'.format(i) for i in range(1, 14)]

    for url in urls:
        data = requests.get(url, headers=headers)
        soup = BeautifulSoup(data.text, 'lxml')
        links = soup.select('.result_btm_con.lodgeunitname')

        for link in links:
            url_list.append(link.get('detailurl'))
            print(link.get('detailurl'))

    return url_list


# 定义获取房屋信息的函数
def get_item_from(url):

    data = requests.get(url, headers=headers)
    soup = BeautifulSoup(data.text, 'lxml')
    # 房屋标题
    house_titles = soup.select('.pho_info > h4 > em')
    # 房屋地址
    house_addrs = soup.select('.pr5')
    # 房屋评分
    house_scores = soup.select('em.score-rate')
    # 房屋价格
    house_prices = soup.select('.day_l > span')
    # 房屋第一张图片, 有链接但直接打开报错
    house_pics = soup.select('.pho_show_big > div > img')
    # 房东图片, 有链接但直接打开报错
    landlord_imgs = soup.select('.member_pic > a > img')
    # 房东姓名
    landlord_names = soup.select('div.w_240 > h6 > a')
    # 房东芝麻信用
    landlord_zms = soup.select('.zm_ico.zm_credit')
    # 判断房东性别
    if soup.select('.member_girl_ico'):
        landlord_gens = 'MM'
    elif soup.select('.member_boy_ico'):
        landlord_gens = 'FM'
    else:
        landlord_gens = 'FF'

    data = {
        'title': house_titles[0].get_text() if house_titles else None,
        'house_addr': house_addrs[0].get_text().strip() if house_addrs else None,
        'house_score': house_scores[0].get_text() if house_scores else None,
        'house_price': int(house_prices[0].get_text()) if house_pics else None,
        'house_pic': house_pics[0].get('src') if house_pics else None,
        'landlord_img': landlord_imgs[0].get('src') if landlord_imgs else None,
        'landlord_gen': landlord_gens,
        'landlord_name': landlord_names[0].get_text() if landlord_names else None,
        'landlord_zm': landlord_zms[0].get_text() if landlord_zms else None,
        'url': url,
    }
    # 将数据存储至mongodb
    item_info.insert_one(data)
    print(data)

# 将房屋链接存储至列表
url_list = get_url_from()

# 从列表中取出链接传入get_item_from函数以获取房屋信息
for url in url_list:
    get_item_from(url)

# 从mongodb中筛选出价格大于500元的房屋
for house in item_info.find({'house_price': {'$gt': 500}}):
    print(house)
# python3 spider_xiaozhu.py  // 运行结果

结果

http://sh.xiaozhu.com/fangzi/1174953165.html
http://sh.xiaozhu.com/fangzi/1677560635.html
.
.
.
http://sh.xiaozhu.com/fangzi/2514835762.html
http://sh.xiaozhu.com/fangzi/3424890030.html
http://sh.xiaozhu.com/fangzi/3092487529.html
.
.
.
{'landlord_zm': '671', 'house_price': 466, 'title': '迪士尼|新国际博览中心|地铁零距离|舒适三房', 'house_addr': '上海市浦东区环桥路1137弄', 'url': 'http://sh.xiaozhu.com/fangzi/3266673930.html', 'landlord_gen': 'FM', 'landlord_img': 'http://image.xiaozhustatic1.com/21/4,0,68,7037,374,374,1d69c0b2.jpg', 'house_score': '5分', '_id': ObjectId('577ba20b3dd54e6a47569fec'), 'landlord_name': '水中花7089', 'house_pic': 'http://image.xiaozhustatic1.com/00,800,533/6,0,50,4614,1798,1200,021d8c01.jpg'}
{'landlord_zm': '731', 'house_price': 198, 'title': '打浦桥#日月光#田子坊#瑞金南路独卫主卧', 'house_addr': '上海市徐汇区瑞金南路546号海晖公寓', 'url': 'http://sh.xiaozhu.com/fangzi/2792949163.html', 'landlord_gen': 'MM', 'landlord_img': 'http://image.xiaozhustatic1.com/21/2,0,12,1234,382,382,edf77c10.jpg', 'house_score': '5分', '_id': ObjectId('577ba20c3dd54e6a47569fed'), 'landlord_name': '戒不掉的奶茶', 'house_pic': 'http://image.xiaozhustatic1.com/00,800,533/6,0,64,797,1798,1200,d21c9325.jpg'}
.
.
.
{'landlord_zm': '737', 'house_price': 730, 'title': '外滩,豫园,新天地,旅游温馨便利两居室', 'house_addr': '上海市黄浦区中华路868弄', 'url': 'http://sh.xiaozhu.com/fangzi/1882270235.html', 'landlord_gen': 'FM', 'landlord_img': 'http://image.xiaozhustatic1.com/21/2,0,9,2490,375,375,98d3731a.jpg', 'house_score': '5分', '_id': ObjectId('577ba20c3dd54e6a47569fee'), 'landlord_name': 'linzhijing', 'house_pic': 'http://image.xiaozhustatic1.com/00,800,533/4,0,65,6603,1800,1202,7bb65f83.jpg'}
.
.
.
{'house_price': 566, 'title': '迪士尼|新国展|中式温馨三房', 'landlord_gen': 'FM', 'house_addr': '上海市浦东区秀沿路2585弄', 'landlord_name': '水中花7089', 'landlord_zm': '671', 'landlord_img': 'http://image.xiaozhustatic1.com/21/4,0,68,7037,374,374,1d69c0b2.jpg', 'house_pic': 'http://image.xiaozhustatic1.com/00,800,533/6,0,22,5143,1798,1200,706a8741.jpg', 'url': 'http://sh.xiaozhu.com/fangzi/3267192930.html', '_id': ObjectId('577b83833dd54e5ba1aa663a'), 'house_score': '5分'}
{'house_price': 650, 'title': '法租界 衡山路【复古法式老洋房】带花园', 'landlord_gen': 'MM', 'house_addr': '上海市徐汇区永嘉新村', 'landlord_name': 'CarolineCheung', 'landlord_zm': '724', 'landlord_img': 'http://image.xiaozhustatic1.com/21/3,0,31,877,375,375,e1511563.jpg', 'house_pic': 'http://image.xiaozhustatic1.com/00,800,533/6,0,70,2817,1800,1200,a2d1b86f.jpg', 'url': 'http://sh.xiaozhu.com/fangzi/1265282535.html', '_id': ObjectId('577b83843dd54e5ba0aa663b'), 'house_score': None}
{'house_price': 1680, 'title': '豪华联排别墅虹桥火车站虹桥机场国家会展中心', 'landlord_gen': 'MM', 'house_addr': '上海市青浦区徐泾明珠路555弄(国家会展中心西4公...', 'landlord_name': 'jenny0103', 'landlord_zm': '751', 'landlord_img': 'http://image.xiaozhustatic1.com/21/2,0,73,2626,375,375,ef9e175b.jpg', 'house_pic': 'http://image.xiaozhustatic1.com/00,800,533/3,0,17,5911,1798,1200,d8d5b9d0.jpg', 'url': 'http://sh.xiaozhu.com/fangzi/1682762135.html', '_id': ObjectId('577b83863dd54e5ba0aa663f'), 'house_score': None}
{'house_price': 730, 'title': '外滩,豫园,新天地,旅游温馨便利两居室', 'landlord_gen': 'FM', 'house_addr': '上海市黄浦区中华路868弄', 'landlord_name': 'linzhijing', 'landlord_zm': '737', 'landlord_img': 'http://image.xiaozhustatic1.com/21/2,0,9,2490,375,375,98d3731a.jpg', 'house_pic': 'http://image.xiaozhustatic1.com/00,800,533/4,0,65,6603,1800,1202,7bb65f83.jpg', 'url': 'http://sh.xiaozhu.com/fangzi/1882270235.html', '_id': ObjectId('577ba20c3dd54e6a47569fee'), 'house_score': '5分'}
.
.
.
{'house_price': 558, 'title': '居有故事老洋房,逛法租界巨富长 ', 'landlord_gen': 'MM', 'house_addr': '上海市徐汇区长乐路', 'landlord_name': '上海乔安娜', 'landlord_zm': '788', 'landlord_img': 'http://image.xiaozhustatic1.com/21/6,0,97,1310,488,488,b24e1e39.jpg', 'house_pic': 'http://image.xiaozhustatic1.com/00,800,533/6,0,22,2044,1800,1200,a83dd3ef.jpg', 'url': 'http://sh.xiaozhu.com/fangzi/2980986063.html', '_id': ObjectId('577ba20d3dd54e6a47569fef'), 'house_score': '5分'}

4. 总结

MongoDB 与 RDBMS Where 语句比较
如果你熟悉常规的 SQL 数据,通过下表可以更好的理解 MongoDB 的条件语句查询:

操作 格式 范例 RDBMS中的类似语句
等于 {<key>:<value>} db.col.find({"by":"菜鸟教程"}).pretty() where by = '菜鸟教程'
小于 {<key>:{$lt:<value>}} db.col.find({"likes":{$lt:50}}).pretty() where likes < 50
小于或等于 {<key>:{$lte:<value>}} db.col.find({"likes":{$lte:50}}).pretty() where likes <= 50
大于 {<key>:{$gt:<value>}} db.col.find({"likes":{$gt:50}}).pretty() where likes > 50
大于或等于 {<key>:{$gte:<value>}} db.col.find({"likes":{$gte:50}}).pretty() where likes >= 50
不等于 {<key>:{$ne:<value>}} db.col.find({"likes":{$ne:50}}).pretty() where likes != 50
上一篇下一篇

猜你喜欢

热点阅读