电磁学乱七八糟的符号(一)

2019-07-21  本文已影响0人  今日你学左米啊

电磁学乱七八糟的符号(一)

@(study)[Maxe, markdown_study, LaTex_study]
author:何伟宝


chapter1 场量基础

通量\psi

\psi = \int_s \vec F \bullet \vec a_n d S
\psi = \oint_S \vec F \bullet d\vec S

旋量\Gamma

\Gamma=\int_l \vec F \bullet d\vec l
\Gamma=\oint_l \vec F \bullet d\vec l

矢性微分算符\nabla

\nabla =\vec a_x \frac{\partial }{\partial x}+\vec a_y \frac{\partial }{\partial y}+\vec a_z \frac{\partial }{\partial z}

拉普拉斯算符\nabla^2

\nabla =\vec a_x \frac{\partial^2 }{\partial x^2}+\vec a_y \frac{\partial^2 }{\partial y^2}+\vec a_z \frac{\partial^2 }{\partial z^2}

\nabla \times (\nabla \times \vec F) = \nabla(\nabla \bullet \vec F) -\nabla^2 \vec F

梯度 grad u

grad u =\vec a_x \frac{\partial u}{\partial x}+\vec a_y \frac{\partial u}{\partial y}+\vec a_z \frac{\partial u}{\partial z}
gradu=\nabla u

散度div F

div \vec F \triangleq \lim_{\triangle V\to 0} \frac{\oint_S \vec F d \vec S}{\triangle V}

div \vec F=\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+ \frac{\partial F_z}{\partial z} =\nabla \bullet \vec F

\int_V \nabla \bullet \vec F d V =\oint_l \vec F d \vec S

环量面密度\gamma_n

\gamma_n \triangleq \lim_{\triangle S\to 0} \frac{\oint_l \vec F d \vec l}{\triangle S}

旋度R_m

\vec R_m \triangleq rot \vec F =\vec a_n \lgroup \lim_{\triangle S \to 0} \frac{\oint \vec F d \vec l }{\triangle S} \rgroup_{max}

rot \vec F =\nabla \times \vec F

\int_S \nabla \times \vec F \bullet d \vec S = \oint_l \vec F d \vec l

chapter2 常量基本方程

电荷密度

体电荷密度:
\rho (\vec r^{\bullet} ) = \lim_{\triangle V \to 0 } \frac{\triangle q}{\triangle V^\bullet} = \frac{d q}{d V^\bullet}
q= \int_V \rho(\vec r^\bullet) d V^\bullet

面电荷密度:
\rho_s (\vec r^{\bullet} ) = \lim_{\triangle S \to 0 } \frac{\triangle q}{\triangle S^\bullet} = \frac{d q}{d S^\bullet}
q= \int_S \rho_S(\vec r^\bullet) d S^\bullet

线电荷密度:
\rho_l (\vec r^{\bullet} ) = \lim_{\triangle l \to 0 } \frac{\triangle q}{\triangle l^\bullet} = \frac{d q}{d l^\bullet}
q= \int_l \rho_l(\vec r^\bullet) d l^\bullet

点电荷:
q(\vec r)= \sum_{i=1}^N q_i(\vec r_i)

电流&&电流密度

电流:
i = \lim_{\triangle t \to 0}\frac{\triangle q }{\triangle t}=\frac{d q}{d t}

体电流密度矢量:

\vec J= \vec a_n \lim_{\triangle S^\bullet \to 0} \frac{\triangle i}{\triangle S^\bullet}=\vec a_n \frac{di }{dS^\bullet}

i = \int_s \vec J \bullet d \vec S

\nabla \bullet \vec J=- \frac{\partial \rho}{\partial t}

面电流密度:

\vec J_s =\vec a_n \lim_{\triangle l^\bullet \to 0} \frac{\triangle i}{\triangle l^\bullet} = \vec a_n \frac{d i}{d l^\bullet}

i = \int_l \vec J_s \bullet (\vec n \times d \vec l^\bullet)

由于静态场的麦克斯韦方程组还没有统一,这里就不写了

电场强度E:

\vec E \triangleq \frac{\vec F}{q_0}

磁感应强度B:

\vec B \triangleq \frac{\mu}{4\pi}\oint_l \frac{I d \vec l \times a_R}{R^2}

感应电动势\varepsilon_{in}

\varepsilon_{in} \triangleq -\frac{d \psi}{d t}
其中\psi为磁通量
\psi \triangleq \int_S \vec B \bullet d \vec S
所以:
\varepsilon_{in} = \int_s \frac{\partial \vec B}{\partial t} \bullet d \vec S

本章的一些常数

  1. \varepsilon_0 自由空间的电容率 (介电常数)
    \varepsilon_0 =8.85\times 10^{-12}\approx \frac {10^{-9}}{36\pi} F/m
  2. \mu_0真空磁导率
    \mu_0=4\pi \times 10^{-7}H/m

chapter3静态场

标量电位\Phi

\vec E(\vec r) \triangleq -\triangle\Phi(\vec r)

\Phi(\vec r)=\frac{W}{q}

电位的标量泊松方程:
\nabla^2 \Phi(\vec r) = - \frac{\rho(\vec r)}{\varepsilon_0}

电位的标量拉普拉斯方程:
\nabla^2 \Phi(\vec r) = 0

矢量磁位(磁矢位) A

\vec B (\vec r )\triangleq \nabla \times \vec A(\vec r)

库仑规范:
\nabla \bullet \vec A = 0

磁矢位的矢量泊松方程:
\nabla^2 \vec A (\vec r )=- \mu_0 \vec J (\vec r)

磁矢位的矢量拉普拉斯方程
\nabla^2 \vec A (\vec r )=0

磁矩m:
\vec m \triangleq \vec I \vec S

极化强度矢量P

\vec P(\vec r)=\lim_{\triangle V \to 0} \frac{\sum_i \vec p_i}{\triangle V}
\vec P = \chi_e \varepsilon_0 \vec E
其中\chi_e为电极化率

电位移矢量D

\vec D(\vec r) \triangleq \varepsilon_0 \vec E(\vec r)+\vec P(\vec r)
所以有:

\int_s \vec D(\vec r) \bullet d \vec S =q

\nabla \bullet \vec D(\vec r) = \rho(\vec r)

\vec D = \varepsilon \vec E

磁化强度矢量M

\vec M(\vec r)=\lim_{\triangle V \to 0} \frac{\sum_i \vec m_i}{\triangle V}
\vec M = \chi_m H
其中\chi_m为磁化率

磁化强度H

\vec H(\vec r)=\frac{\vec B(\vec r)}{\mu_0}-\vec M(\vec r)
\oint_l \vec H\bullet d\vec l=I
\nabla \times \vec H (\vec r )=\vec J(\vec r)
\vec B=\mu \vec H

欧姆定律微分形式

\vec J(\vec r)=\sigma \vec E(\vec r)
其中\sigma为电导率

热损耗功率

p(\vec r)=\vec J(\vec r)\bullet \vec E(\vec r)=\sigma E^2(\vec r)

边界条件

\vec a_n \times (\vec E_1 -\vec E_2)=0,\quad \quad E_{1t}=E_{2t}
\vec a_n \times (\vec H_1 -\vec H_2)=\vec J_s,\quad \quad H_{1t}-H_{2t}=J_s
\vec a_n \bullet (\vec D_1 -\vec D_2) =\rho_s, \quad D_{1n}-D_{2n}=\rho_s
\vec a_n \bullet (\vec B_1 - \vec B_2)=0,\quad \quad B_{1n}=B_{2n}

能量

静电场能量密度:
\omega_e = \frac 12 \varepsilon E^2
\omega_e = \frac 12 \vec D(\vec r )\bullet \vec E(\vec r)
静磁场能量密度:
\omega_m = \frac 12 \mu H^2
\omega_m = \frac 12 \vec H(\vec r )\bullet \vec B(\vec r)

chapter4 动态场

麦克斯韦方程组

\begin{cases} \oint_l \vec E(\vec r,t)\bullet d \vec l = -\int_S \frac{\partial \vec B(\vec r,t)}{\partial t} \bullet d \vec S , \quad\quad \nabla \times \vec E(\vec r,t) = - \frac{\partial \vec B(\vec r,t)}{\partial t} \\ \oint_l \vec H(\vec r,t)\bullet d\vec l = \int_S (\vec J(\vec r,t)+\frac{\partial \vec D(\vec r,t)}{\partial t}),\quad \nabla \times \vec H(\vec r,t)=\vec J(\vec r,t)+\frac{\partial \vec D(\vec r,t)}{\partial t}\\ \oint_S \vec D(\vec r,t)\bullet d \vec S = \int_V \rho(\vec r,t)dV,\quad\quad\quad\quad \nabla \bullet \vec D(\vec r,t)=\rho(\vec r,t)\\ \oint_S \vec B(\vec r ,t)\bullet d \vec S =0 ,\quad \quad\quad\quad\quad\quad\quad\quad\nabla \bullet \vec B(\vec r,t)=0 \end{cases}

标量电位更新

\vec E=-\nabla\Phi -\frac{\partial \vec A}{\partial t}

波动方程

洛伦兹条件(洛伦兹规范):
\nabla \bullet \vec A=-\mu \varepsilon \frac{\partial \Phi}{\partial t}
非齐次波动方程(动态退化可以得到其他规范):
\nabla^2 \Phi(\vec r,t)-\mu\varepsilon\frac{\partial^2\Phi(\vec r,t)}{\partial t^2}=- \frac{\rho(\vec r,t)}{\varepsilon}

\nabla^2 A(\vec r,t)-\mu\varepsilon\frac{\partial^2 A(\vec r,t)}{\partial t^2}= -\mu \vec J(\vec r,t)

坡印亭矢量

\vec S (\vec r,t) \triangleq \vec E(\vec r,t)\times \vec H(\vec r,t)

-\nabla \bullet \vec S=\frac{\partial\omega}{\partial t}+p

-\oint_S \vec S(\vec r,t)\bullet d \vec S=\frac{\partial}{\partial t}\int_V \omega(\vec r,t)d V+\int_Vp(\vec r,t)dV

复数表示

u(z,t)=Re\{ [U_0(z)e^{j\phi}]e^{j\omega t} \} = Re \{ \dot{U}(z) e^{j\omega t} \}
\dot{U}(z)=U_0(z)e^{j\phi}

复数形式麦克斯韦方程

\nabla \times \vec E=j\omega \vec B
\nabla \times \vec H =\vec J + j \omega \vec D
\dot{\vec E}=\vec a_x\dot{E_x}(\vec r)+\vec a_y\dot{E_y}(\vec r)+\vec a_z\dot{E_z}(\vec r)

复波动方程

\nabla \bullet \vec A(\vec r) = -j\omega \mu\varepsilon \Phi(\vec r)

\nabla^2\Phi(\vec r)+\omega^2\mu\varepsilon\Phi(\vec r)=-\frac{\rho(\vec r)}{\varepsilon}
\nabla^2 \vec A(\vec r)+\omega^2\mu\varepsilon \vec A(\vec r)=-\mu \vec J(\vec r)
k^2=\omega^2\mu\varepsilon有:
非齐次亥姆霍兹方程:
\nabla^2\Phi(\vec r)+k^2\Phi(\vec r)=-\frac{\rho(\vec r)}{\varepsilon}
\nabla^2 \vec A(\vec r)+k^2 \vec A(\vec r)=-\mu \vec J(\vec r)
齐次亥姆霍兹方程:
\nabla^2\Phi(\vec r)+k^2\Phi(\vec r)=0
\nabla^2 \vec A(\vec r)+k^2 \vec A(\vec r)=0

波阻抗\eta

\eta_0=\sqrt{\frac{\mu_0}{\varepsilon_0}}

时均坡印亭矢量S_{av}

\vec S_av(\vec r)=\frac 1T\int_0^T\vec S(\vec r,t)dt=\frac 12 [\vec E_0(\vec r)\times \vec H_0(\vec r)]cos(\phi_e-\phi_n)

复坡印亭矢量\dot{S}

\dot{S}(\vec r)=\frac 12 \vec E(\vec r) \times \vec H^*(\vec r)=\frac 12 \vec E_0(\vec r)e^{-j\phi_e}\times \vec H_0(\vec r )e^{j\phi_n}=\frac 12[\vec E_0(\vec r)\times \vec H_0(\vec r)]e^{\phi_e-\phi_n}

其中:
\vec S_av(\vec r)=Re\{ \dot{S}(\vec r) \}

复坡印亭定理

-\oint_s \dot{S}(\vec r)\bullet d \dot{S} =j2\omega \int_V[\omega_{m-av}(\vec r)-\omega_{e-av}(\vec r)]dV +\int_V p_{av}(\vec r)dV

其中:
\omega_av (\vec r)=\frac 14[\vec E(\vec r)\bullet \vec D^*(\vec r)+\vec B(\vec r)\bullet \vec H^*(\vec r)]=\frac 14[\varepsilon|\vec E(\vec r)|^2 + \mu|\vec H(\vec r)|^2 ]=Re\omega(\vec r)
p_{av}(\vec r)=\frac 12 \vec E(\vec r )\bullet \vec J^*(\vec r) =\frac 12 \sigma |\vec E(\vec r)|^2 =Rep(\vec r)

结语

天书虽然可怕,但,他还是你爸爸
也就,100条公式而已,前四章
想我尽早更新的方法之一

上一篇下一篇

猜你喜欢

热点阅读