ElasticSearch实战笔记

28、function_score自定义相关度分数算法,以及fu

2020-04-12  本文已影响0人  众神开挂

主要内容:function_score自定义相关度分数算法,以及fuzzy模糊搜索

1、function_score自定义相关度分数算法

我们可以做到自定义一个function_score函数,自己将某个field的值,跟es内置算出来的分数进行运算,然后由自己指定的field来进行分数的增强

给所有的帖子数据增加follower数量

POST /forum/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"follower_num" : 5} }
{ "update": { "_id": "2"} }
{ "doc" : {"follower_num" : 10} }
{ "update": { "_id": "3"} }
{ "doc" : {"follower_num" : 25} }
{ "update": { "_id": "4"} }
{ "doc" : {"follower_num" : 3} }
{ "update": { "_id": "5"} }
{ "doc" : {"follower_num" : 60} }

将对帖子搜索得到的分数,跟follower_num进行运算,由follower_num在一定程度上增强帖子的分数
看帖子的人越多,那么帖子的分数就越高

GET /forum/_search
{
  "query": {
    "function_score": {
      "query": {
        "multi_match": {
          "query": "java spark",
          "fields": ["title", "content"]
        }
      },
      "field_value_factor": {
        "field": "follower_num",
        "modifier": "log1p",
        "factor": 0.5
      },
      "boost_mode": "sum",
      "max_boost": 2
    }
  }
}

如果只有field,那么会将每个doc的分数都乘以follower_num,如果有的doc follower是0,那么分数就会变为0,效果很不好。因此一般会加个log1p函数,公式会变为,new_score = old_score * log(1 + number_of_votes),这样出来的分数会比较合理
再加个factor,可以进一步影响分数,new_score = old_score * log(1 + factor * number_of_votes)
boost_mode,可以决定分数与指定字段的值如何计算,multiply,sum,min,max,replace
max_boost,限制计算出来的分数不要超过max_boost指定的值

2、fuzzy模糊搜索

搜索的时候,可能输入的搜索文本会出现误拼写的情况

fuzzy搜索技术 --> 自动将拼写错误的搜索文本,进行纠正,纠正以后去尝试匹配索引中的数据

POST /my_index/_bulk
{ "index": { "_id": 1 }}
{ "text": "Surprise me!"}
{ "index": { "_id": 2 }}
{ "text": "That was surprising."}
{ "index": { "_id": 3 }}
{ "text": "I wasn't surprised."}

开始查询:

GET /my_index/_search 
{
  "query": {
    "fuzzy": {
      "text": {
        "value": "surprize",
        "fuzziness": 2
      }
    }
  }
}

fuzziness,你的搜索文本最多可以纠正几个字母去跟你的数据进行匹配,默认是2

在使用query查询的时候,可以设置自动纠错

GET /my_index/_search 
{
  "query": {
    "match": {
      "text": {
        "query": "SURPIZE ME",
        "fuzziness": "AUTO",
        "operator": "and"
      }
    }
  }
}
上一篇 下一篇

猜你喜欢

热点阅读