数据结构-线段树
2019-04-10 本文已影响0人
听你讲故事啊
实现一个线段树
下面实现的线段树,有三个功能:
- 把数组构建成一颗线段树
- 线段树的修改
- 线段树的查询
public class SegmentTree<T> {
private T tree[];
private T data[];
private Merger<T> merger;
public interface Merger<T> {
T merge(T a, T b);
}
public SegmentTree(T[] arr, Merger<T> merger) {
this.merger = merger;
data = (T[]) new Object[arr.length];
for (int i = 0; i < data.length; i++) {
data[i] = arr[i];
}
this.tree = (T[]) new Object[data.length * 4];
buildSegmentTree(0, 0, data.length - 1);
}
/**
* 构建线段树
*
* @param treeIndex 当前需要添加节点的索引
* @param treeLeft treeIndex左边界
* @param treeRight treeIndex右边界
*/
private void buildSegmentTree(int treeIndex, int treeLeft, int treeRight) {
if (treeLeft == treeRight) {
tree[treeIndex] = data[treeLeft];
return;
}
//当前节点左子树索引
int leftTreeIndex = getLeft(treeIndex);
//当前节点右子树索引
int rightTreeIndex = getRight(treeIndex);
//int mid = (left+right)/2; 如果left和right很大,可能会导致整型溢出
int mid = treeLeft + (treeRight - treeLeft) / 2;
//构建左子树
buildSegmentTree(leftTreeIndex, treeLeft, mid);
//构建右子树
buildSegmentTree(rightTreeIndex, mid + 1, treeRight);
//当前节点存放的值
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
public T query(int start, int end) {
return query(0, 0, data.length - 1, start, end);
}
/**
* @param treeIndex 当前查找的节点
* @param treeLeft treeIndex的左边界
* @param treeRight treeIndex的右边界
* @param queryL 用户需要查找的左边界
* @param queryR 用户需要查找的右边界
* @return
*/
private T query(int treeIndex, int treeLeft, int treeRight, int queryL, int queryR) {
//1, 需要查找的范围完刚好在这个treeIndex节点的区间
if (treeLeft == queryL && treeRight == queryR) {
return tree[treeIndex];
}
//当前节点的区间的中间点
int mid = treeLeft + (treeRight - treeLeft) / 2;
//左子树索引
int leftTreeIndex = getLeft(treeIndex);
//右子树索引
int rightTreeIndex = getRight(treeIndex);
//2, 需要查找的范围完全在左子树的区间里
if (queryR <= mid) {
return query(leftTreeIndex, treeLeft, mid, queryL, queryR);
}
//3, 需要查找的范围完全在右子树区间里
if (queryL >= mid + 1) {
return query(rightTreeIndex, mid + 1, treeRight, queryL, queryR);
}
//需要查找的范围一部分在左子树里,一部分在右子树中
T left = query(leftTreeIndex, treeLeft, mid, queryL, mid);
T right = query(rightTreeIndex, mid + 1, treeRight, mid + 1, queryR);
return merger.merge(left, right);
}
public void update(int index, T e) {
data[index] = e;
update(0, 0, data.length - 1, index, e);
}
private void update(int treeIndex, int treeLeft, int treeRight, int index, T e) {
if (treeLeft == treeRight) {
tree[treeIndex] = e;
return;
}
int mid = treeLeft + (treeRight - treeLeft) / 2;
int leftChildIndex = getLeft(treeIndex);
int rightChildIndex = getRight(treeIndex);
if (index <= mid) {
update(leftChildIndex, treeLeft, mid, index, e);
} else if (index >= mid + 1) {
update(rightChildIndex, mid + 1, treeRight, index, e);
}
//更改完叶子节点后,还需要对他的所有祖辈节点更新
tree[treeIndex] = merger.merge(tree[leftChildIndex], tree[rightChildIndex]);
}
public T get(int index) {
return data[0];
}
public int size() {
return data.length;
}
public int getLeft(int index) {
return index * 2 + 1;
}
public int getRight(int index) {
return index * 2 + 2;
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
builder.append("[");
for (int i = 0; i < tree.length; i++) {
if (tree[i] == null) {
continue;
}
builder.append(tree[i]).append(',');
}
builder.deleteCharAt(builder.length() - 1);
builder.append(']');
return builder.toString();
}
}
303号问题
给定数组, 求区间的和, 数组不可变
class NumArray {
private interface Merger<E> {
E merge(E a, E b);
}
private class SegmentTree<E> {
private E[] tree;
private E[] data;
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger){
this.merger = merger;
data = (E[])new Object[arr.length];
for(int i = 0 ; i < arr.length ; i ++)
data[i] = arr[i];
tree = (E[])new Object[4 * arr.length];
buildSegmentTree(0, 0, arr.length - 1);
}
// 在treeIndex的位置创建表示区间[l...r]的线段树
private void buildSegmentTree(int treeIndex, int l, int r){
if(l == r){
tree[treeIndex] = data[l];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
// int mid = (l + r) / 2;
int mid = l + (r - l) / 2;
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeIndex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
public int getSize(){
return data.length;
}
public E get(int index){
if(index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal.");
return data[index];
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index){
return 2*index + 1;
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index){
return 2*index + 2;
}
// 返回区间[queryL, queryR]的值
public E query(int queryL, int queryR){
if(queryL < 0 || queryL >= data.length ||
queryR < 0 || queryR >= data.length || queryL > queryR)
throw new IllegalArgumentException("Index is illegal.");
return query(0, 0, data.length - 1, queryL, queryR);
}
// 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
private E query(int treeIndex, int l, int r, int queryL, int queryR){
if(l == queryL && r == queryR)
return tree[treeIndex];
int mid = l + (r - l) / 2;
// treeIndex的节点分为[l...mid]和[mid+1...r]两部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if(queryL >= mid + 1)
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
else if(queryR <= mid)
return query(leftTreeIndex, l, mid, queryL, queryR);
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.append('[');
for(int i = 0 ; i < tree.length ; i ++){
if(tree[i] != null)
res.append(tree[i]);
else
res.append("null");
if(i != tree.length - 1)
res.append(", ");
}
res.append(']');
return res.toString();
}
}
private SegmentTree<Integer> segmentTree;
public NumArray(int[] nums) {
if(nums.length > 0){
Integer[] data = new Integer[nums.length];
for (int i = 0; i < nums.length; i++)
data[i] = nums[i];
segmentTree = new SegmentTree<>(data, (a, b) -> a + b);
}
}
public int sumRange(int i, int j) {
if(segmentTree == null)
throw new IllegalArgumentException("Segment Tree is null");
return segmentTree.query(i, j);
}
}
307号问题
给定数组, 求区间的和, 数组可变
需要给线段树添加一个更新方法
class NumArray {
private interface Merger<E> {
E merge(E a, E b);
}
private class SegmentTree<E> {
private E[] tree;
private E[] data;
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger){
this.merger = merger;
data = (E[])new Object[arr.length];
for(int i = 0 ; i < arr.length ; i ++)
data[i] = arr[i];
tree = (E[])new Object[4 * arr.length];
buildSegmentTree(0, 0, arr.length - 1);
}
// 在treeIndex的位置创建表示区间[l...r]的线段树
private void buildSegmentTree(int treeIndex, int l, int r){
if(l == r){
tree[treeIndex] = data[l];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
// int mid = (l + r) / 2;
int mid = l + (r - l) / 2;
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeIndex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
public int getSize(){
return data.length;
}
public E get(int index){
if(index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal.");
return data[index];
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index){
return 2*index + 1;
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index){
return 2*index + 2;
}
// 返回区间[queryL, queryR]的值
public E query(int queryL, int queryR){
if(queryL < 0 || queryL >= data.length ||
queryR < 0 || queryR >= data.length || queryL > queryR)
throw new IllegalArgumentException("Index is illegal.");
return query(0, 0, data.length - 1, queryL, queryR);
}
// 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
private E query(int treeIndex, int l, int r, int queryL, int queryR){
if(l == queryL && r == queryR)
return tree[treeIndex];
int mid = l + (r - l) / 2;
// treeIndex的节点分为[l...mid]和[mid+1...r]两部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if(queryL >= mid + 1)
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
else if(queryR <= mid)
return query(leftTreeIndex, l, mid, queryL, queryR);
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
// 将index位置的值,更新为e
public void set(int index, E e){
if(index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal");
data[index] = e;
set(0, 0, data.length - 1, index, e);
}
// 在以treeIndex为根的线段树中更新index的值为e
private void set(int treeIndex, int l, int r, int index, E e){
if(l == r){
tree[treeIndex] = e;
return;
}
int mid = l + (r - l) / 2;
// treeIndex的节点分为[l...mid]和[mid+1...r]两部分
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if(index >= mid + 1)
set(rightTreeIndex, mid + 1, r, index, e);
else // index <= mid
set(leftTreeIndex, l, mid, index, e);
tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.append('[');
for(int i = 0 ; i < tree.length ; i ++){
if(tree[i] != null)
res.append(tree[i]);
else
res.append("null");
if(i != tree.length - 1)
res.append(", ");
}
res.append(']');
return res.toString();
}
}
private SegmentTree<Integer> segTree;
public NumArray(int[] nums) {
if(nums.length != 0){
Integer[] data = new Integer[nums.length];
for(int i = 0 ; i < nums.length ; i ++)
data[i] = nums[i];
segTree = new SegmentTree<>(data, (a, b) -> a + b);
}
}
public void update(int i, int val) {
if(segTree == null)
throw new IllegalArgumentException("Error");
segTree.set(i, val);
}
public int sumRange(int i, int j) {
if(segTree == null)
throw new IllegalArgumentException("Error");
return segTree.query(i, j);
}
}
参考:
https://blog.csdn.net/zearot/article/details/52280189
https://github.com/raywenderlich/swift-algorithm-club/tree/master/Segment%20Tree