线段树

数据结构-线段树

2019-04-10  本文已影响0人  听你讲故事啊

实现一个线段树

下面实现的线段树,有三个功能:

  1. 把数组构建成一颗线段树
  2. 线段树的修改
  3. 线段树的查询
public class SegmentTree<T> {

    private T tree[];
    private T data[];

    private Merger<T> merger;

    public interface Merger<T> {
        T merge(T a, T b);
    }

    public SegmentTree(T[] arr, Merger<T> merger) {
        this.merger = merger;
        data = (T[]) new Object[arr.length];
        for (int i = 0; i < data.length; i++) {
            data[i] = arr[i];
        }

        this.tree = (T[]) new Object[data.length * 4];
        buildSegmentTree(0, 0, data.length - 1);

    }


    /**
     * 构建线段树
     *
     * @param treeIndex 当前需要添加节点的索引
     * @param treeLeft  treeIndex左边界
     * @param treeRight treeIndex右边界
     */
    private void buildSegmentTree(int treeIndex, int treeLeft, int treeRight) {
        if (treeLeft == treeRight) {
            tree[treeIndex] = data[treeLeft];
            return;
        }
        //当前节点左子树索引
        int leftTreeIndex = getLeft(treeIndex);
        //当前节点右子树索引
        int rightTreeIndex = getRight(treeIndex);
        //int mid = (left+right)/2; 如果left和right很大,可能会导致整型溢出
        int mid = treeLeft + (treeRight - treeLeft) / 2;
        //构建左子树
        buildSegmentTree(leftTreeIndex, treeLeft, mid);
        //构建右子树
        buildSegmentTree(rightTreeIndex, mid + 1, treeRight);
        //当前节点存放的值
        tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);

    }

    public T query(int start, int end) {
        return query(0, 0, data.length - 1, start, end);
    }

    /**
     * @param treeIndex 当前查找的节点
     * @param treeLeft  treeIndex的左边界
     * @param treeRight treeIndex的右边界
     * @param queryL    用户需要查找的左边界
     * @param queryR    用户需要查找的右边界
     * @return
     */
    private T query(int treeIndex, int treeLeft, int treeRight, int queryL, int queryR) {

        //1, 需要查找的范围完刚好在这个treeIndex节点的区间
        if (treeLeft == queryL && treeRight == queryR) {
            return tree[treeIndex];
        }

        //当前节点的区间的中间点
        int mid = treeLeft + (treeRight - treeLeft) / 2;
        //左子树索引
        int leftTreeIndex = getLeft(treeIndex);
        //右子树索引
        int rightTreeIndex = getRight(treeIndex);


        //2, 需要查找的范围完全在左子树的区间里
        if (queryR <= mid) {
            return query(leftTreeIndex, treeLeft, mid, queryL, queryR);
        }
        //3, 需要查找的范围完全在右子树区间里
        if (queryL >= mid + 1) {
            return query(rightTreeIndex, mid + 1, treeRight, queryL, queryR);
        }

        //需要查找的范围一部分在左子树里,一部分在右子树中
        T left = query(leftTreeIndex, treeLeft, mid, queryL, mid);
        T right = query(rightTreeIndex, mid + 1, treeRight, mid + 1, queryR);
        return merger.merge(left, right);
    }


    public void update(int index, T e) {
        data[index] = e;
        update(0, 0, data.length - 1, index, e);
    }


    private void update(int treeIndex, int treeLeft, int treeRight, int index, T e) {
        if (treeLeft == treeRight) {
            tree[treeIndex] = e;
            return;
        }

        int mid = treeLeft + (treeRight - treeLeft) / 2;
        int leftChildIndex = getLeft(treeIndex);
        int rightChildIndex = getRight(treeIndex);

        if (index <= mid) {
            update(leftChildIndex, treeLeft, mid, index, e);
        } else if (index >= mid + 1) {
            update(rightChildIndex, mid + 1, treeRight, index, e);
        }

        //更改完叶子节点后,还需要对他的所有祖辈节点更新
        tree[treeIndex] = merger.merge(tree[leftChildIndex], tree[rightChildIndex]);
    }

    public T get(int index) {
        return data[0];
    }

    public int size() {
        return data.length;
    }

    public int getLeft(int index) {
        return index * 2 + 1;
    }

    public int getRight(int index) {
        return index * 2 + 2;
    }

    @Override
    public String toString() {
        StringBuilder builder = new StringBuilder();
        builder.append("[");
        for (int i = 0; i < tree.length; i++) {
            if (tree[i] == null) {
                continue;
            }
            builder.append(tree[i]).append(',');
        }
        builder.deleteCharAt(builder.length() - 1);
        builder.append(']');
        return builder.toString();
    }
}

303号问题

给定数组, 求区间的和, 数组不可变

class NumArray {

    private interface Merger<E> {
        E merge(E a, E b);
    }

    private class SegmentTree<E> {

        private E[] tree;
        private E[] data;
        private Merger<E> merger;

        public SegmentTree(E[] arr, Merger<E> merger){

            this.merger = merger;

            data = (E[])new Object[arr.length];
            for(int i = 0 ; i < arr.length ; i ++)
                data[i] = arr[i];

            tree = (E[])new Object[4 * arr.length];
            buildSegmentTree(0, 0, arr.length - 1);
        }

        // 在treeIndex的位置创建表示区间[l...r]的线段树
        private void buildSegmentTree(int treeIndex, int l, int r){

            if(l == r){
                tree[treeIndex] = data[l];
                return;
            }

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);

            // int mid = (l + r) / 2;
            int mid = l + (r - l) / 2;
            buildSegmentTree(leftTreeIndex, l, mid);
            buildSegmentTree(rightTreeIndex, mid + 1, r);

            tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
        }

        public int getSize(){
            return data.length;
        }

        public E get(int index){
            if(index < 0 || index >= data.length)
                throw new IllegalArgumentException("Index is illegal.");
            return data[index];
        }

        // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
        private int leftChild(int index){
            return 2*index + 1;
        }

        // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
        private int rightChild(int index){
            return 2*index + 2;
        }

        // 返回区间[queryL, queryR]的值
        public E query(int queryL, int queryR){

            if(queryL < 0 || queryL >= data.length ||
                    queryR < 0 || queryR >= data.length || queryL > queryR)
                throw new IllegalArgumentException("Index is illegal.");

            return query(0, 0, data.length - 1, queryL, queryR);
        }

        // 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
        private E query(int treeIndex, int l, int r, int queryL, int queryR){

            if(l == queryL && r == queryR)
                return tree[treeIndex];

            int mid = l + (r - l) / 2;
            // treeIndex的节点分为[l...mid]和[mid+1...r]两部分

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);
            if(queryL >= mid + 1)
                return query(rightTreeIndex, mid + 1, r, queryL, queryR);
            else if(queryR <= mid)
                return query(leftTreeIndex, l, mid, queryL, queryR);

            E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
            E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
            return merger.merge(leftResult, rightResult);
        }

        @Override
        public String toString(){
            StringBuilder res = new StringBuilder();
            res.append('[');
            for(int i = 0 ; i < tree.length ; i ++){
                if(tree[i] != null)
                    res.append(tree[i]);
                else
                    res.append("null");

                if(i != tree.length - 1)
                    res.append(", ");
            }
            res.append(']');
            return res.toString();
        }
    }

    private SegmentTree<Integer> segmentTree;

    public NumArray(int[] nums) {

        if(nums.length > 0){
            Integer[] data = new Integer[nums.length];
            for (int i = 0; i < nums.length; i++)
                data[i] = nums[i];
            segmentTree = new SegmentTree<>(data, (a, b) -> a + b);
        }

    }

    public int sumRange(int i, int j) {

        if(segmentTree == null)
            throw new IllegalArgumentException("Segment Tree is null");

        return segmentTree.query(i, j);
    }
}

307号问题

给定数组, 求区间的和, 数组可变
需要给线段树添加一个更新方法

class NumArray {

    private interface Merger<E> {
        E merge(E a, E b);
    }

    private class SegmentTree<E> {

        private E[] tree;
        private E[] data;
        private Merger<E> merger;

        public SegmentTree(E[] arr, Merger<E> merger){

            this.merger = merger;

            data = (E[])new Object[arr.length];
            for(int i = 0 ; i < arr.length ; i ++)
                data[i] = arr[i];

            tree = (E[])new Object[4 * arr.length];
            buildSegmentTree(0, 0, arr.length - 1);
        }

        // 在treeIndex的位置创建表示区间[l...r]的线段树
        private void buildSegmentTree(int treeIndex, int l, int r){

            if(l == r){
                tree[treeIndex] = data[l];
                return;
            }

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);

            // int mid = (l + r) / 2;
            int mid = l + (r - l) / 2;
            buildSegmentTree(leftTreeIndex, l, mid);
            buildSegmentTree(rightTreeIndex, mid + 1, r);

            tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
        }

        public int getSize(){
            return data.length;
        }

        public E get(int index){
            if(index < 0 || index >= data.length)
                throw new IllegalArgumentException("Index is illegal.");
            return data[index];
        }

        // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
        private int leftChild(int index){
            return 2*index + 1;
        }

        // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
        private int rightChild(int index){
            return 2*index + 2;
        }

        // 返回区间[queryL, queryR]的值
        public E query(int queryL, int queryR){

            if(queryL < 0 || queryL >= data.length ||
                    queryR < 0 || queryR >= data.length || queryL > queryR)
                throw new IllegalArgumentException("Index is illegal.");

            return query(0, 0, data.length - 1, queryL, queryR);
        }

        // 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
        private E query(int treeIndex, int l, int r, int queryL, int queryR){

            if(l == queryL && r == queryR)
                return tree[treeIndex];

            int mid = l + (r - l) / 2;
            // treeIndex的节点分为[l...mid]和[mid+1...r]两部分

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);
            if(queryL >= mid + 1)
                return query(rightTreeIndex, mid + 1, r, queryL, queryR);
            else if(queryR <= mid)
                return query(leftTreeIndex, l, mid, queryL, queryR);

            E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
            E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
            return merger.merge(leftResult, rightResult);
        }

        // 将index位置的值,更新为e
        public void set(int index, E e){

            if(index < 0 || index >= data.length)
                throw new IllegalArgumentException("Index is illegal");

            data[index] = e;
            set(0, 0, data.length - 1, index, e);
        }

        // 在以treeIndex为根的线段树中更新index的值为e
        private void set(int treeIndex, int l, int r, int index, E e){

            if(l == r){
                tree[treeIndex] = e;
                return;
            }

            int mid = l + (r - l) / 2;
            // treeIndex的节点分为[l...mid]和[mid+1...r]两部分

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);
            if(index >= mid + 1)
                set(rightTreeIndex, mid + 1, r, index, e);
            else // index <= mid
                set(leftTreeIndex, l, mid, index, e);

            tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
        }

        @Override
        public String toString(){
            StringBuilder res = new StringBuilder();
            res.append('[');
            for(int i = 0 ; i < tree.length ; i ++){
                if(tree[i] != null)
                    res.append(tree[i]);
                else
                    res.append("null");

                if(i != tree.length - 1)
                    res.append(", ");
            }
            res.append(']');
            return res.toString();
        }
    }

    private SegmentTree<Integer> segTree;

    public NumArray(int[] nums) {

        if(nums.length != 0){
            Integer[] data = new Integer[nums.length];
            for(int i = 0 ; i < nums.length ; i ++)
                data[i] = nums[i];
            segTree = new SegmentTree<>(data, (a, b) -> a + b);
        }
    }

    public void update(int i, int val) {
        if(segTree == null)
            throw new IllegalArgumentException("Error");
        segTree.set(i, val);
    }

    public int sumRange(int i, int j) {
        if(segTree == null)
            throw new IllegalArgumentException("Error");
        return segTree.query(i, j);
    }
}

参考:
https://blog.csdn.net/zearot/article/details/52280189

https://github.com/raywenderlich/swift-algorithm-club/tree/master/Segment%20Tree

https://blog.csdn.net/johnny901114/article/details/80643017

完整代码

上一篇下一篇

猜你喜欢

热点阅读