大数据

Spark 1.6升级2.x防踩坑指南

2017-09-11  本文已影响1832人  StanZhai

原创文章,谢绝转载

Spark 2.x自2.0.0发布到目前的2.2.0已经有一年多的时间了,2.x宣称有诸多的性能改进,相信不少使用Spark的同学还停留在1.6.x或者更低的版本上,没有升级到2.x或许是由于1.6相对而言很稳定,或许是升级后处处踩坑被迫放弃。

Spark SQL是Spark中最重要的模块之一,基本上Spark每个版本发布SQL模块都有不少的改动,而且官网还会附带一个Migration Guide帮忙大家升级。问题在于Migration Guide并没有详尽的列出所有变动,本文以SQL模块为主,扒一扒Spark升级2.x过程中可能会踩到的坑。

计算准确性

那些升级后,让你感到心中有千万只草泥马奔腾而过的问题

行为变化

那些不算太致命,改改代码或配置就可以兼容的问题。

版本回退

那些升级到2.x后,发现有问题回退后,让你欲哭无泪的问题。

其他

从2.2.0开始,Spark不在支持Hadoop 2.5及更早的版本,同时也不支持Java 7 了,所以,如果你用的版本比较老,还是尽快升级的比较好。

2.x中对于ThriftServer或JobServer这样的长时间运行的服务,稳定性不如1.6,如果您的计算业务复杂、SQL计算任务繁多、频繁的更新数据、处理数据量较大,稳定性的问题更加凸显。稳定性问题主要集中在内存方面,Executor经常出现堆外内存严重超出、OOM导致进程异常退出等问题。Executor进程OOM异常退出后相关的block-mgr目录(也就是SPARK_LOCAL_DIRS)并不会被清理,这就导致Spark Application长时间运行很容易出现磁盘被写满的情况。

总结

Spark 2.x中为了性能,SQL模块的改动相当大,这也导致Bug变多,稳定性变差。当然,随着Spark的不断改进迭代,这些问题也在逐步缓解。

对于一个计算服务,相比性能,数据计算的正确性及稳定性更加重要。建议尚未升级到2.x的同学,最好使用最新的Spark版本做升级;升级前,务必结合自己的业务场景做好充分的测试,避免踩坑。

Spark大数据技术

本文同步更新到微信公众号,欢迎扫码关注。

上一篇 下一篇

猜你喜欢

热点阅读