(五)完全随机梯度下降
2020-04-06 本文已影响0人
羽天驿
一、代码
import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2,12,40).reshape(-1,1)
w = np.random.randint(2,12,size = 1)
b = np.random.randint(-10,10,size = 1)
y = X*w + b + np.random.randn(40,1)*4.5
# 将y.reshape(-1)一维的
y = y.reshape(-1)
plt.scatter(X,y,color = 'red')
<matplotlib.collections.PathCollection at 0x2c3eeaa3ec8>
output_1_1.png
用方法,实现梯度下降
m是样本的数量
对数据X增加了一列,这一列对应着,截距
# 作为训练数据,增加了一列,截距
X_train = np.concatenate([X,np.ones(shape = (40,1))],axis = 1)
X_train
array([[-2. , 1. ],
[-1.64102564, 1. ],
[-1.28205128, 1. ],
[-0.92307692, 1. ],
[-0.56410256, 1. ],
[-0.20512821, 1. ],
[ 0.15384615, 1. ],
[ 0.51282051, 1. ],
[ 0.87179487, 1. ],
[ 1.23076923, 1. ],
[ 1.58974359, 1. ],
[ 1.94871795, 1. ],
[ 2.30769231, 1. ],
[ 2.66666667, 1. ],
[ 3.02564103, 1. ],
[ 3.38461538, 1. ],
[ 3.74358974, 1. ],
[ 4.1025641 , 1. ],
[ 4.46153846, 1. ],
[ 4.82051282, 1. ],
[ 5.17948718, 1. ],
[ 5.53846154, 1. ],
[ 5.8974359 , 1. ],
[ 6.25641026, 1. ],
[ 6.61538462, 1. ],
[ 6.97435897, 1. ],
[ 7.33333333, 1. ],
[ 7.69230769, 1. ],
[ 8.05128205, 1. ],
[ 8.41025641, 1. ],
[ 8.76923077, 1. ],
[ 9.12820513, 1. ],
[ 9.48717949, 1. ],
[ 9.84615385, 1. ],
[10.20512821, 1. ],
[10.56410256, 1. ],
[10.92307692, 1. ],
[11.28205128, 1. ],
[11.64102564, 1. ],
[12. , 1. ]])
根据矩阵求解的梯度,进行梯度下降
生成系数时,必须考虑形状
def gradient_descent(X,y):
m = 1# 从40个样本中随机选取1个样本,计算梯度
theta = np.random.randn(2) # theta中既有斜率,又有截距
last_theta = theta + 0.1 #记录theta更新后,和上一步的误差
precision = 1e-4 #精确度
epsilon = 0.01 #步幅
count= 0
while True:
# 当斜率和截距误差小于万分之一时,退出
if (np.abs(theta - last_theta) < precision).all():
break
if count > 50000:#死循环执行了3000次
break
# 更新
last_theta = theta.copy()
# 随机梯度下降,梯度是矩阵计算返回的
index = np.random.choice(np.arange(40),size = m)# index索引,根据随机索引从原数据中取数据
grad = 2/m*X[index].T.dot(X[index].dot(theta) - y[index])
theta -= epsilon*grad
count += 1
return theta
w_,b_ = gradient_descent(X_train,y)
j = lambda x : w_*x + b_
plt.scatter(X[:,0],y,color = 'red')
x_test = np.linspace(-2,12,1024)
y_ = j(x_test)
plt.plot(x_test,y_,color = 'green')
[<matplotlib.lines.Line2D at 0x2c3eec8d388>]
output_10_1.png
def gradient_descent(X,y):
m = 5# 从40个样本中随机选取1个样本,计算梯度
theta = np.random.randn(2) # theta中既有斜率,又有截距
last_theta = theta + 0.1 #记录theta更新后,和上一步的误差
precision = 1e-4 #精确度
epsilon = 0.01 #步幅
count= 0
while True:
# 当斜率和截距误差小于万分之一时,退出
if (np.abs(theta - last_theta) < precision).all():
break
if count > 10000:#死循环执行了3000次
break
# 更新
last_theta = theta.copy()
# 随机梯度下降,梯度是矩阵计算返回的
index = np.random.choice(np.arange(40),size = m)# index索引,根据随机索引从原数据中取数据
grad = 2/m*X[index].T.dot(X[index].dot(theta) - y[index])
theta -= epsilon*grad
count += 1
return theta
w_,b_ = gradient_descent(X_train,y)
j = lambda x : w_*x + b_
plt.scatter(X[:,0],y,color = 'red')
x_test = np.linspace(-2,12,1024)
y_ = j(x_test)
plt.plot(x_test,y_,color = 'green')
[<matplotlib.lines.Line2D at 0x2c3eecf7f08>]
output_11_1.png