内存分配(malloc)的过程
[TOC]
参考
- malloc()之后,内核发生了什么?
- 进程分配内存的两种方式--brk() 和mmap()(不涉及共享内存)
- Linux内存分配小结--malloc、brk、mmap
- 详解缺页中断-----缺页中断处理(内核、用户)
1. 缺页中断
1.1. 什么是缺页中断
malloc和mmap等内存分配函数只是建立进程的虚拟地址空间,并没有分配实际的物理内存。当进程访问没有建立映射关系的虚拟内存时会自动的触发一个缺页中断。
请求分页的系统当中,可以查询页表当前的状态位来查询当前页是否在内存当中,如果不在内存当中可以通过页表当中的外存地址将缺的一页读到内存当中。比如mmap映射文件。
1.2. 如何查看缺页中断
用ps -o majflt,minflt -C program
命令查看。
majflt代表major fault(需要读取磁盘),中文名叫大错误,minflt代表minor fault(不需要读取磁盘),中文名叫小错误。
这两个数值表示一个进程自启动以来所发生的缺页中断的次数。
1.3. 缺页异常发生后的操作
当一个进程发生缺页中断的时候,进程会陷入内核态,执行以下操作:
- 检查要访问的虚拟地址是否合法
- 查找/分配一个物理页
- 填充物理页内容(读取磁盘,或者直接置0,或者啥也不干)
- 建立映射关系(虚拟地址到物理地址)
- 重新执行发生缺页中断的那条指令
如果第3步,需要读取磁盘,那么这次缺页中断就是majflt,否则就是minflt。
2. 内存分配过程(malloc)
从操作系统角度来看,进程分配内存有两种方式,分别由两个系统调用完成:brk和mmap(不考虑共享内存)。
-
brk是将数据段(.data)的最高地址指针_edata往高地址推;
-
mmap是在进程的虚拟地址空间中(堆和栈中间,称为文件映射区域的地方)找一块空闲的虚拟内存。
这两种方式分配的都是虚拟内存,没有分配物理内存。在第一次访问(读/写)已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系。
在标准C库中,提供了malloc/free函数分配释放内存,这两个函数底层是由brk,mmap,munmap这些系统调用实现的。
2.1. brk分配
malloc小于128k的内存,使用brk分配内存,将_edata往高地址推
brk分配内存- 进程启动的时候,其(虚拟)内存空间的初始布局如图1所示。其中,mmap内存映射文件是在堆和栈的中间(例如libc-2.2.93.so,其它数据文件等),为了简单起见,省略了内存映射文件。_edata指针(glibc里面定义)指向数据段的最高地址。
- 进程调用A=malloc(30K)以后,内存空间如图2:malloc函数会调用brk系统调用,将_edata指针往高地址推30K,就完成虚拟内存分配。(注:_edata+30K只是完成虚拟地址的分配,A这块内存现在还是没有物理页与之对应的,等到进程第一次读写A这块内存的时候,发生缺页中断,这个时候,内核才分配A这块内存对应的物理页。也就是说,如果用malloc分配了A这块内容,然后从来不访问它,那么,A对应的物理页是不会被分配的。)
- 进程调用B=malloc(40K)以后,内存空间如图3。
2.2. mmap分配内存
malloc大于128k的内存,使用mmap分配内存,在堆和栈之间找一块空闲内存分配(对应独立内存,而且初始化为0)
mmap分配内存
- 进程调用C=malloc(200K)以后,内存空间如图4:默认情况下,malloc函数分配内存,如果请求内存大于128K(可由M_MMAP_THRESHOLD选项调节),那就不是去推_edata指针了,而是利用mmap系统调用,从堆和栈的中间分配一块虚拟内存。
这样子做主要是因为:brk分配的内存需要等到高地址内存释放以后才能释放(例如,在B释放之前,A是不可能释放的,这就是内存碎片产生的原因,什么时候紧缩看下面),而mmap分配的内存可以单独释放。 - 进程调用D=malloc(100K)以后,内存空间如图5;
- 进程调用free(C)以后,C对应的虚拟内存和物理内存一起释放。
2.3. 释放内存
上一小节已经介绍了mmap的内存释放,这里主要看brk的内存释放
释放内存
- 进程调用free(B)以后,如图7所示:B对应的虚拟内存和物理内存都没有释放,因为只有一个_edata指针,如果往回推,那么D这块内存怎么办呢?当然,B这块内存,是可以重用的,如果这个时候再来一个40K的请求,那么malloc很可能就把B这块内存返回回去了。
- 进程调用free(D)以后,如图8所示:B和D连接起来,变成一块140K的空闲内存。
- 默认情况下:当最高地址空间的空闲内存超过128K(可由M_TRIM_THRESHOLD选项调节)时,执行内存紧缩操作(trim)。在上一个步骤free的时候,发现最高地址空闲内存超过128K,于是内存紧缩,变成图9所示。
3. malloc 测试
- 循环new分配64K * 2048的内存空间,写入脏数据后,循环调用delete释放。top看进程依然使用131M内存,没有释放。 —— 此时用brk
- 循环new分配128K * 2048的内存空间,写入脏数据后,循环调用delete释放。top看进程使用,2960字节内存,完全释放。 —— 此时用mmap
- 设置M_MMAP_THRESHOLD 256k,循环new分配128k * 2048 的内存空间,写入脏数据后,循环调用delete释放,而后调用malloc_trim(0)。top看进程使用,2348字节,完全释放。 ——此时用brk
4. 简单思考
既然堆内内存brk不能直接释放,为什么不全部使用 mmap 来分配,munmap直接释放呢?
其实,进程向 OS 申请和释放地址空间的接口 sbrk/mmap/munmap 都是系统调用,频繁调用系统调用都比较消耗系统资源的。并且, mmap 申请的内存被 munmap 后,重新申请会产生更多的缺页中断。例如使用 mmap 分配 1M 空间,第一次调用产生了大量缺页中断 (1M/4K 次 ) ,当munmap 后再次分配 1M 空间,会再次产生大量缺页中断。缺页中断是内核行为,会导致内核态CPU消耗较大。另外,如果使用 mmap 分配小内存,会导致地址空间的分片更多,内核的管理负担更大。
同时堆是一个连续空间,并且堆内碎片由于没有归还 OS ,如果可重用碎片,再次访问该内存很可能不需产生任何系统调用和缺页中断,这将大大降低 CPU 的消耗。 因此, glibc 的 malloc 实现中,充分考虑了 brk 和 mmap 行为上的差异及优缺点,默认分配大块内存 (128k) 才使用 mmap 获得地址空间,也可通过 mallopt(M_MMAP_THRESHOLD, <SIZE>) 来修改这个临界值。