算法代码

查找链表入环的第一个节点

2020-08-13  本文已影响0人  windUtterance

题目描述
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
说明:不允许修改给定的链表。

示例
输入:head = [3,2,0,-4], pos = 1
输出:tail connects to node index 1
解释:链表中有一个环,其尾部连接到第二个节点。

image.png
双指针第一次相遇: 设两指针 fast,slow 指向链表头部 head,fast 每轮走 2 步,slow 每轮走 1 步;

第一种结果: fast 指针走过链表末端,说明链表无环,直接返回 null;

TIPS: 若有环,两指针一定会相遇。因为每走 1轮,fast 与 slow 的间距 +1,fast 终会追上 slow;
第二种结果: 当fast == slow时, 两指针在环中 第一次相遇 。下面分析此时fast 与 slow走过的 步数关系 :

设链表共有 a+b 个节点,其中 链表头部到链表入口 有 a 个节点(不计链表入口节点), 链表环 有 b个节点(这里需要注意,a 和 b 是未知数,例如图解上链表 a=4 , b=5);设两指针分别走了 f,s 步,则有:
fast 走的步数是slow步数的 2 倍,即 f = 2s;(解析: fast 每轮走 2 步)
fast 比 slow多走了 n 个环的长度,即 f = s + nb;( 解析: 双指针都走过 a 步,然后在环内绕圈直到重合,重合时 fast 比 slow 多走 环的长度整数倍 );
以上两式相减得:f = 2nb,s = nb,即fast和slow 指针分别走了 2n,n 个 环的周长 (注意: n 是未知数,不同链表的情况不同)。
目前情况分析:

如果让指针从链表头部一直向前走并统计步数k,那么所有 走到链表入口节点时的步数 是:k=a+nb(先走 a 步到入口节点,之后每绕 1 圈环( b 步)都会再次到入口节点)。
而目前,slow 指针走过的步数为 nbnb 步。因此,我们只要想办法让 slow 再走 a 步停下来,就可以到环的入口。
但是我们不知道 a 的值,该怎么办?依然是使用双指针法。我们构建一个指针,此指针需要有以下性质:此指针和slow 一起向前走 a 步后,两者在入口节点重合。那么从哪里走到入口节点需要 a 步?答案是链表头部head。
双指针第二次相遇:

slow指针 位置不变 ,将fast指针重新 指向链表头部节点 ;slow和fast同时每轮向前走 11 步;
TIPS:此时 f = 0,s = nb ;
当 fast 指针走到f = a 步时,slow 指针走到步s = a+nb,此时 两指针重合,并同时指向链表环入口 。
返回slow指针指向的节点。

复杂度分析:
时间复杂度 O(N) :第二次相遇中,慢指针须走步数 a < a + b;第一次相遇中,慢指针须走步数 a + b - x < a + b,其中 x 为双指针重合点与环入口距离;因此总体为线性复杂度;
空间复杂度 O(1):双指针使用常数大小的额外空间。

作者:jyd
链接:https://leetcode-cn.com/problems/linked-list-cycle-ii/solution/linked-list-cycle-ii-kuai-man-zhi-zhen-shuang-zhi-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Java代码

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public ListNode detectCycle(ListNode head) {
        ListNode fast = head, slow = head;
        while(true) {
            if(fast == null || fast.next == null) return null;
            fast = fast.next.next;
            slow = slow.next;
            if(fast == slow) break;
        }
        fast = head;
        while(slow != fast) {
            slow = slow.next;
            fast = fast.next;

        }
        return fast;
    }
}
上一篇 下一篇

猜你喜欢

热点阅读