科普世界宇宙科普日更大挑战

恒星的结束——白矮星,黑矮星,中子星

2021-03-29  本文已影响0人  何处是我的归宿

大家好,我是地球宝宝,今天我来为大家系统的整理关于恒星生命末期的知识,前几篇文章涉及到了关于这方面的一些知识,在这里就不过多赘述了,今天我们来了解恒星生命结束时的另三种形态,快开始吧!

白矮星

中低质量的恒星在主序星阶段,氢聚变反应结束以后,将在核心进行氦聚变,即每三个氦核聚变成一个碳核,碳核再捕获另外的氦核而形成氧核,并膨胀成为一颗红巨星。

当红巨星的辐射压力不能平衡引力,外部向外膨胀并不断变冷,而内部氦核受引力作用收缩坍塌,被压缩的物质不断变热,最终内核温度将超过一亿度,于是氦开始聚变成碳。经过几百万年,氦核燃烧殆尽,恒星的结构组成已经不那么简单了:外壳仍然是以氢为主的混合物,而在它下面有一个氦层,氦层内部还埋有一个碳球。核反应过程变得更加复杂,中心附近的温度继续上升,最终使碳转变为其他元素。与此同时,红巨星外部开始发生不稳定的脉动振荡:恒星半径时而变大,时而又缩小,稳定的主星序恒星变为极不稳定的巨大火球,火球内部的核反应也越来越趋于不稳定,忽而强烈,忽而微弱。此时的恒星内部核心实际上密度已经增大到每立方厘米十吨左右,我们可以说,此时,在红巨星内部,已经诞生了一颗白矮星。当恒星的不稳定状态达到极限后,红巨星会进行爆发,把核心以外的物质都抛离恒星本体,物质向外扩散成为星云,残留下来的内核就是我们能看到的白矮星。所以白矮星通常都由碳和氧组成。但也有可能核心的温度可以达到燃烧碳却仍不足以燃烧氖的温度,这时就能形成核心由氧、氖和镁组成的白矮星。偶尔有些由氦组成的白矮星,不过这是由联星的质量损失造成的。

白矮星的内部不再有物质进行核聚变反应,因此恒星不再有能量产生。这时它也不再由核聚变的热来抵抗重力崩溃,而是由极端高密度的物质产生的电子简并压力来支撑。物理学上,对一颗没有自转的白矮星,电子简并压力能够支撑的最大质量是1.4倍太阳质量,也就是钱德拉塞卡极限。许多碳氧白矮星的质量都接近这个极限的质量,有时经由伴星的质量传递,白矮星可能经由碳引爆过程爆炸成为一颗Ia超新星

白矮星形成时的温度非常高,但是因为没有能量的来源。因此将会逐渐释放它的热量并解逐渐变冷 (温度降低),这意味着它的辐射会从最初的高色温随着时间逐渐减小并且转变成红色。经过漫长的时间,白矮星的温度将冷却到光度不再能被看见,而成为冷的黑矮星。但是,现在的宇宙仍然太年轻 (大约137亿岁),即使是最年老的白矮星依然辐射出数千K的温度,还不可能有黑矮星的存在。 

白矮星属于演化到晚年期的恒星,恒星在演化后期,抛射出大量的物质,经过大量的质量损失后,如果剩下的核的质量小于1.44个太阳质量,这颗恒星便演化成为白矮星。对白矮星的形成也有人认为,白矮星的前身是行星状星云(是宇宙中由高温气体、少量尘埃等组成的环状或圆盘状的物质),它的中心通常都有一个温度很高的恒星──中心星,它的核能源已经基本耗尽,整个星体开始慢慢冷却、晶化,直至最后“死亡”。

电子简并压与白矮星强大的重力平衡,维持着白矮星的稳定。当白矮星质量进一步增大,电子简并压就有可能抵抗不住自身的引力收缩,白矮星还会坍缩成密度更高的天体:中子星黑洞。对单星系统而言,由于没有热核反应来提供能量,白矮星在发出光热的同时,也以同样的速度冷却着。经过数千亿年的漫长岁月,年老的白矮星将渐渐停止辐射而死去。它的躯体变成一个比钻石还硬的巨大晶体——黑矮星

而对于多星系统,白矮星的演化过程则有可能被改变(例如双星)。 

两个白矮星互相运动

黑矮星

(中小质量恒星演化的最后期)

黑矮星(Black Dwarf)是中小质量恒星演化的最后期。大约1个太阳质量恒星演化的终极产物。它由低温简并电子气体组成,由于整个星体处于最低的能态,因此无法再产生能量辐射了。以碳为主和少量尘埃构成。恒星残骸冷却至黑矮星大约需要200万亿年的时间,宇宙的年龄仅有137亿年。科学家并没有确定发现任何黑矮星,也认为宇宙中暂时不存在黑矮星。

黑矮星 (Black dwarf) 是类似太阳质量大小的白矮星(或质量较小的中子星)继续演变的产物,其表面温度下降,停止发光发热。

黑矮星是理论上估计未来将会出现的天体﹐指质量大致为一个太阳质量或更小的恒星最终演化而成的天体﹐它处于冷简并态﹐不再发出辐射能。由于一颗恒星由形成至演变为黑矮星的生命周期比现今宇宙的年龄还要长,因此现时的宇宙并没有任何黑矮星。 假如现时的宇宙有黑矮星存在的话,侦测它们的难度也极高。因为它们已停止发出辐射,即使有也是极微量,且多被宇宙微波背景辐射所遮盖,因此侦测的方法只有使用重力侦测,但此方法对于质量较小的星效用不大,这个问题在于侦测到了一颗和白矮星大小相仿的不发光星体,以现有技术很难区分它是行星还是黑矮星。

黑矮星艺术图

中子星

中子星(neutron star)是除黑洞外密度最大的星体,恒星演化到末期,经由重力崩溃发生超新星爆炸之后,可能成为的少数终点之一,质量没有达到可以形成黑洞的恒星在寿命终结时塌缩形成的一种介于白矮星和黑洞之间的星体,其密度比地球上任何物质密度大相当多倍。

绝大多数的脉冲星都是中子星,但中子星不一定是脉冲星,有脉冲才算是脉冲星。

中子星的前身一般是一颗质量为10-29倍太阳质量的恒星。它在爆发坍缩过程中产生的巨大压力,使它的物质结构发生巨大的变化。在这种情况下,不仅原子的外壳被压破了,而且连原子核也被压破了。原子核中的质子和中子便被挤出来,质子和电子挤到一起又结合成中子。最后,所有的中子挤在一起,形成了中子星。显然,中子星的密度,即使是由原子核所组成的白矮星也无法和它相比。在中子星上,每立方厘米物质足足有一亿吨重甚至达到十亿吨。

恒星收缩为中子星后,自转就会加快,能达到每秒几圈到几十圈。同时,收缩使中子星成为一块极强的“磁铁”,这块“磁铁”在它的某一部分向外发射出电波。当它快速自转时,就像灯塔上的探照灯那样,有规律地不断向地球扫射电波。

当发射电波的那部分对着地球时,我们就收到电波;当这部分随着星体的转动而偏转时,我们就收不到电波。所以,我们收到的电波是间歇的。这种现象又称为“灯塔效应”。

中子星艺术图

好啦,今天的科普就到这里,我是地球宝宝,我们,明天见!

上一篇下一篇

猜你喜欢

热点阅读