学习一篇NC的单细胞文章(一):质控
很开心能在2020年加入“单细胞天地”这个团队,作为单细胞新手,我希望未来能学会更多的单细胞测序知识,写更多的笔记,撸起袖子干呗!
最近看到了2018年NC的一篇乳腺癌单细胞文章,文章题目是“Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq”,相关数据集是GSE118390,代码存放在Github上(https://github.com/Michorlab/tnbc_scrnaseq)。
刚开始看了一下,我觉得代码超有意思,作者从QC、Normalized等一系列下游分析全程用R分析,并且在补充材料也详细说明了这个流程。虽然这篇文献的代码都已经上传到Guitub上,但是如果自己去跑代码的话,势必出现奇奇怪怪的error, 于是我结合文献的methods,对文献进行解读并在作者的代码基础上,进行翻译和修改,最后重现里面的图片。
接下来我会分为几篇笔记来记录学习的过程,我都亲自跑过并且修改出现error的代码,基本不会出现error,如果出现的话,记得联系我们单细胞天地哦!
一.质控
scRNA-seq数据相比RNA-seq数据,具有更多的噪声,这主要是因为要可靠地转换和扩增单个细胞中的少量RNA(也称为RNA捕获)。因此,在scRNA-seq数据中,经常会出现许多细胞中一个基因中没有表达或是低表达水平的情况,也称dropout events,这不一定反映真实的生物信号。如果不进行质控,不去除低质量的细胞或表达过低的基因,都会使下游分析产生偏差,使分离生物信号或生物噪声变得更加困难。
(1).去除低质量的细胞
#加载R包
library(here)
source(here::here("code", "1.libraries.R"))
source(here::here("code", "funcs.R"))
##定义函数
intersect_all <- function(a,b,...){
Reduce(intersect, list(a,b,...))
}
# 读入数据,包括进行TPM的数据,原始counts数据,原始qc数据,还有基因注释信息。
tpm.rsem <- read.table(here::here("data", "tpm_original.txt"), sep = "\t")
counts.rsem <- read.table(here::here("data", "counts_original.txt"), sep = "\t")
qc <- read.table(here::here("data", "qc_original.txt"), sep = "\t", stringsAsFactors = FALSE)
mappings <- readRDS(here::here("data", "mappings.RDS"))
length(tpm.rsem)
> length(tpm.rsem)
[1] 1536
#总共1536个细胞
在这一步骤,又细分为3个具体流程来去除低质量的细胞:
1.针对Total reads(Library size)进行过滤, 2. 针对Number of expressed genes进行过滤 3. 针对Total amount of mRNA过滤
#创建SingSingleCellExperiment对象
#min_thresh_log_tpm <- 0.1
#定义基因表达的标准:如果一个基因的log2(TPM+1)》0.1,则认为该基因表达
sceset_all<- SingleCellExperiment(assays = list(counts = as.matrix(counts.rsem),
tpm = as.matrix(tpm.rsem),
exprs = log2(as.matrix(tpm.rsem) + 1),
expressed = log2(tpm.rsem + 1) > min_thresh_log_tpm),
colData = qc,
rowData = mappings)
#最开始拿到的数据是1536个细胞,21785个基因
> sceset_all
class: SingleCellExperiment
dim: 21785 1536
metadata(0):
assays(4): counts tpm exprs expressed
rownames(21785): A1BG A1BG-AS1 ... ZZEF1 ZZZ3
rowData names(7): ensembl_gene_id hgnc_symbol ... gc gene_short_name
colnames(1536): PT089_P1_A01 PT089_P1_A02 ... PT039_P10_H11_S287 PT039_P10_H12_S288
colData names(50): Sample uniquely_mapped_percent ... number_batch depletion_batch
reducedDimNames(0):
altExpNames(0):
#看看有没有线粒体基因,可以看见,没有线粒体基因
location <- rowRanges(sceset_all)
is.mito <- any(seqnames(location)=="MT")
> table(is.mito)
is.mito
FALSE
21785
接下来,作者是使用scater的calculateQCMetrics进行质控,但是这个函数已经更新为perCellQCMetrics,因此我们修改一下,修改后的结果跟原来的会有略微不同。
sceset_all <- perCellQCMetrics(sceset_all,exprs_values = "exprs",
detection_limit = min_thresh_log_tpm,flatten=FALSE,
subsets= list("regular" = which(qc$pool_H12 == 0), "pool" = which(qc$pool_H12 == 1)))
sceset_all
>DataFrame with 1536 rows and 6 columns
sum detected percent_top
<numeric> <integer> <matrix>
PT089_P1_A01 16450.7 3531 3.69764: 6.96872:13.0358:...
PT089_P1_A02 14734.2 3351 4.18061: 7.87437:14.8006:...
PT089_P1_A03 10509.7 2572 5.93247:11.23869:21.3078:...
PT089_P1_A04 12532.9 2259 4.99390: 9.27948:17.3099:...
PT089_P1_A05 10296.7 2645 6.08388:11.49941:21.5302:...
... ... ... ...
PT039_P10_H08_S284 14975.18 3525 4.22545: 7.89048:14.50110:...
PT039_P10_H09_S285 34252.25 6851 1.74228: 3.28166: 6.13669:...
PT039_P10_H10_S286 2254.57 518 25.05669:37.61063:57.02423:...
PT039_P10_H11_S287 5999.18 992 9.70546:16.70425:29.07012:...
PT039_P10_H12_S288 52723.36 12939 1.14046: 2.13671: 3.98055:...
subsets altexps total
<DataFrame> <DataFrame> <numeric>
PT089_P1_A01 1429.690:283:8.69074: 0.956057:1:0.00581164 16450.7
PT089_P1_A02 1250.143:278:8.48461: 4.126725:2:0.02800771 14734.2
PT089_P1_A03 917.083:213:8.72608: 0.000000:0:0.00000000 10509.7
PT089_P1_A04 1167.153:196:9.31268:13.114816:2:0.10464271 12532.9
PT089_P1_A05 834.360:198:8.10320: 0.575312:1:0.00558736 10296.7
... ... ... ...
PT039_P10_H08_S284 1270.718:288:8.48549:14.9952:2:0.1001338 14975.18
PT039_P10_H09_S285 2648.937:536:7.73362:25.9505:4:0.0757630 34252.25
PT039_P10_H10_S286 202.396:47:8.97714: 0.0000:0:0.0000000 2254.57
PT039_P10_H11_S287 378.517:65:6.30948: 0.0000:0:0.0000000 5999.18
PT039_P10_H12_S288 4240.555:1063:8.04303:28.6763:6:0.0543901 52723.36
#我们单独看一看subsets的内容
subsets_A= list("regular" = which(qc$pool_H12 == 0), "pool" = which(qc$pool_H12 == 1))
subsets_A
可以看到总共1536个samples,7个是pooled samples,1529个是TNBC single cells。这样子我们就能理解作者这句话的意思了。
Removal of low quality cells
但是接下来我们继续按照作者的代码跑下去,就开始出现问题了。
reads.drop <- isOutlier(as.numeric(sceset_all$total_reads), nmads = 4, type = "lower", log = TRUE)
hist(log10(sceset_all$total_reads), breaks = 100, main = "", col = "grey80", xlab = expression(log[10]~"library size"), ylab = "frequency", cex.lab = 1.4, cex.axis = 1.4)
abline(v = max(log10(sceset_all$total_reads[which(reads.drop == 1)])), col = "blue", lwd = 2, lty = 2)
> Error in log10(sceset_all$total_reads) : 数学函数中用了非数值参数
#我们来看一下sceset_all$total_reads
sceset_all$total_reads
> sceset_all$total_reads
NULL
也就是说perCellQCMetrics之后的sceset_all不包含total_reads这个信息了。这个问题我想了很久才解决,后来发现原来我们不能使用perCellQCMetrics,应该选择 addPerCellQC,这样就可以把QC的结果附加到SingleCellExperiment对象的colData中。我们改一下。
sceset_all <- addPerCellQC(sceset_all,exprs_values = "exprs",
detection_limit = min_thresh_log_tpm,flatten=FALSE,
subsets= list("regular" = which(qc$pool_H12 == 0),
"pool"=which(qc$pool_H12 == 1)))
接着我们需要去除低质量的细胞,文中以每个samples中位数的中位数绝对偏差MAD为阈值,如果细胞的基因表达值距离其中位数多于4xMAD,则认为该值是异常值。但是这种用法有个前提,需要确保细胞都是由高质量的单元组成。这个过滤的过程背后的基本原理是选择自适应和无偏的数据派生阈值。具体详见(Lun et al.,2016b)。由于数据是经过log的,所以设置log = TRUE,对数变换提高了对小数值的分辨率。isOutlier则可以根据MAD确定数值向量中哪些值是异常值。
#质控Toral reads(library size,这时候用的指标是sceset_all$total_reads)
reads.drop <- isOutlier(as.numeric(sceset_all$total_reads), nmads = 4, type = "lower", log = TRUE)
hist(log10(sceset_all$total_reads), breaks = 100, main = "", col = "grey80", xlab = expression(log[10]~"library size"), ylab = "frequency", cex.lab = 1.4, cex.axis = 1.4)
abline(v = max(log10(sceset_all$total_reads[which(reads.drop == 1)])), col = "blue", lwd = 2, lty = 2)
Supplementary Fig. 22(a)
# 质控total mRNA,这时候用的指标是sceset_all$sum
mRNA.drop <- isOutlier(as.numeric(sceset_all$sum), nmads = 4, type = "lower", log = TRUE)
hist(log10(sceset_all$sum), breaks = 100, main = "", col = "grey80", xlab = expression(log[10]~"log10 total mRNA"), ylab = "frequency", cex.lab = 1.4, cex.axis = 1.4)
abline(v = max(log10(sceset_all$sum[which(mRNA.drop == 1)])), col = "blue", lwd = 2, lty = 2)
Supplementary Fig. 22(c)
#质控number of expressed genes,这时候用的指标是sceset_all$detected
feature.drop <- isOutlier(sceset_all$detected, nmads = 4, type = "lower", log = TRUE)
hist(log10(sceset_all$detected), breaks = 100, main = "", col = "grey80", xlab = expression(log[10]~"number of expressed genes"), ylab = "frequency", cex.lab = 1.4, cex.axis = 1.4)
abline(v = max(log10(sceset_all$detected[which(feature.drop == 1)])), col = "blue", lwd = 2, lty = 2)
Supplementary Fig. 22(b)
#将经过QC之后的低质量异常的细胞剔除掉
keep.samples <- !(reads.drop | feature.drop | mRNA.drop)
keep.samples[which(is.na(keep.samples))] <- FALSE
sceset_all <- sceset_all[ ,keep.samples]
> sceset_all
class: SingleCellExperiment
dim: 21785 1326
metadata(0):
assays(4): counts tpm exprs expressed
rownames(21785): A1BG A1BG-AS1 ... ZZEF1 ZZZ3
rowData names(7): ensembl_gene_id hgnc_symbol ... gc gene_short_name
colnames(1326): PT089_P1_A01 PT089_P1_A02 ... PT039_P10_H11_S287
PT039_P10_H12_S288
colData names(50): Sample uniquely_mapped_percent ... number_batch depletion_batch
reducedDimNames(0):
altExpNames(0):
这样子我们就做出来了Supplementary Fig 22的3个图了。可以看到去除低质量的细胞后,最后剩下1326个细胞,跟文章结果一模一样。
Supplementary Methods
2.去除低表达量的基因
首先定义低表达量的基因:
1.如果某个基因在超过95%的总细胞中的表达量较低(log2(TPM + 1) < 0.1) ,那么定义为低表达量的基因。
2.由于样本之间的异质性,还需要过滤每个样本单独的低表达量基因,即在每个样品中,如果某个基因在超过95%细胞中的表达量较低(log2(TPM + 1) < 0.1),那么定义为低表达量基因。
#接下来开始使用monocole包
#创建对象
pd <- new("AnnotatedDataFrame", data = as.data.frame(colData(sceset_all)))
featureNames(pd) <- rownames(pd)
fd <- new("AnnotatedDataFrame", data = as.data.frame(rowData(sceset_all)))
featureNames(fd) <- rowData(sceset_all)$gene_short_name
# 注意原代码 expressionFamily =gaussianff()已经失效,改为expressionFamily =uninormal()
HSMM <- newCellDataSet(assays(sceset_all)$exprs, featureData = fd, phenoData = pd,
lowerDetectionLimit = min_thresh_log_tpm, expressionFamily = uninormal())
HSMM <- detectGenes(HSMM, min_expr = min_thresh_log_tpm)
expr_genes <- row.names(subset(fData(HSMM), num_cells_expressed >= dim(HSMM)[2]*0.05))
再分别过滤每个样本的低表达量基因
HSMM126 <- HSMM[, row.names(subset(pData(HSMM), patient == "PT126"))]
HSMM126 <- detectGenes(HSMM126, min_expr = min_thresh_log_tpm)#detectGenes检测每个细胞中高于某阈值的基因
remove_genes_126 <- row.names(subset(fData(HSMM126), num_cells_expressed < dim(HSMM126)[2]*0.05)) #5%的细胞
HSMM126 <- HSMM126[setdiff(row.names(HSMM126), remove_genes_126), ]#setdiff求两个向量中不同的元素,即去除低表达量的细胞
HSMM39 <- HSMM[, row.names(subset(pData(HSMM), patient == "PT039"))]
HSMM39 <- detectGenes(HSMM39, min_expr = min_thresh_log_tpm)
remove_genes_39 <- row.names(subset(fData(HSMM39), num_cells_expressed < dim(HSMM39)[2]*0.05))
HSMM39 <- HSMM39[setdiff(row.names(HSMM39), remove_genes_39), ]
HSMM58 <- HSMM[, row.names(subset(pData(HSMM), patient == "PT058"))]
HSMM58 <- detectGenes(HSMM58, min_expr = min_thresh_log_tpm)
remove_genes_58 <- row.names(subset(fData(HSMM58), num_cells_expressed < dim(HSMM58)[2]*0.05))
HSMM58 <- HSMM58[setdiff(row.names(HSMM58), remove_genes_58), ]
HSMM81 <- HSMM[, row.names(subset(pData(HSMM), patient == "PT081"))]
HSMM81 <- detectGenes(HSMM81, min_expr = min_thresh_log_tpm)
remove_genes_81 <- row.names(subset(fData(HSMM81), num_cells_expressed < dim(HSMM81)[2]*0.05))
HSMM81 <- HSMM81[setdiff(row.names(HSMM81), remove_genes_81), ]
HSMM84 <- HSMM[, row.names(subset(pData(HSMM), patient == "PT084"))]
HSMM84 <- detectGenes(HSMM84, min_expr = min_thresh_log_tpm)
remove_genes_84 <- row.names(subset(fData(HSMM84), num_cells_expressed < dim(HSMM84)[2]*0.05))
HSMM84 <- HSMM84[setdiff(row.names(HSMM84), remove_genes_84), ]
HSMM89 <- HSMM[, row.names(subset(pData(HSMM), patient == "PT089"))]
HSMM89 <- detectGenes(HSMM89, min_expr = min_thresh_log_tpm)
remove_genes_89 <- row.names(subset(fData(HSMM89), num_cells_expressed < dim(HSMM89)[2]*0.05))
HSMM89 <- HSMM89[setdiff(row.names(HSMM89), remove_genes_89), ]
remove_genes_all <- intersect_all(remove_genes_126, remove_genes_39, remove_genes_58, remove_genes_81, remove_genes_84, remove_genes_89)
keep.genes <- setdiff(rownames(fData(HSMM)), remove_genes_all)
剩下13280个基因保留下来,与原文一样。
> length(keep.genes)
[1] 13280
HSMM <- HSMM[keep.genes, ]
Supplementary Methods
我们下一期再看看比较难的标准化这部分。如果你基本的R代码能看懂,我相信也能大概看懂这些代码的,如果还觉得有困难,那么你可能需要这个https://mp.weixin.qq.com/s/OFCXVknaScqgikIrJ7Csag