合理的估算Java线程池大小的方法

2019-04-18  本文已影响0人  大侠陈

网上有给出简单的线程池大小估算方法

如果是CPU密集型应用,则线程池大小设置为N+1
如果是IO密集型应用,则线程池大小设置为2N+1

然而这两个公式显然是不管用的,除非整个CPU服务于一个线程池<br /> <br />管用的估算方法也有,但是比较复杂

最佳线程数目 =((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

此公式可进一步转换为

最佳线程数目 =(线程等待时间与线程CPU时间之比 + 1)* CPU数目

然而 线程等待时间 和 线程CPU时间 这两个变量却很难精确得到

所幸网上已经有相关的程序帮我们自动通过上面的公式计算出结果

估算类代码如下

import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.BlockingQueue;

/**
 * A class that calculates the optimal thread pool boundaries. It takes the
 * desired target utilization and the desired work queue memory consumption as
 * input and retuns thread count and work queue capacity.
 *
 * @author Niklas Schlimm
 */
public abstract class PoolSizeCalculator {

    /**
     * The sample queue size to calculate the size of a single {@link Runnable}
     * element.
     */
    private final int SAMPLE_QUEUE_SIZE = 1000;

    /**
     * Accuracy of test run. It must finish within 20ms of the testTime
     * otherwise we retry the test. This could be configurable.
     */
    private final int EPSYLON = 20;

    /**
     * Control variable for the CPU time investigation.
     */
    private volatile boolean expired;

    /**
     * Time (millis) of the test run in the CPU time calculation.
     */
    private final long testtime = 3000;

    /**
     * Calculates the boundaries of a thread pool for a given {@link Runnable}.
     *
     * @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <=   *            1)     * @param targetQueueSizeBytes   *            the desired maximum work queue size of the thread pool (bytes)
     */
    protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) {
        calculateOptimalCapacity(targetQueueSizeBytes);
        Runnable task = creatTask();
        start(task);
        start(task); // warm up phase
        long cputime = getCurrentThreadCPUTime();
        start(task);
        // test intervall
        cputime = getCurrentThreadCPUTime() - cputime;
        long waittime = (testtime * 1000000) - cputime;
        calculateOptimalThreadCount(cputime, waittime, targetUtilization);
    }

    private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {
        long mem = calculateMemoryUsage();
        BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem), RoundingMode.HALF_UP);
        System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes);
        System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue");
        System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);
        System.out.println("* Recommended queue capacity (bytes): " + queueCapacity);
    }

    /**
     * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *       * @param cpu    *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization      *            target utilization of the system
     */
    private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) {
        BigDecimal waitTime = new BigDecimal(wait);
        BigDecimal computeTime = new BigDecimal(cpu);
        BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime().availableProcessors());
        BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization).multiply(new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP)));
        System.out.println("Number of CPU: " + numberOfCPU);
        System.out.println("Target utilization: " + targetUtilization);
        System.out.println("Elapsed time (nanos): " + (testtime * 1000000));
        System.out.println("Compute time (nanos): " + cpu);
        System.out.println("Wait time (nanos): " + wait);
        System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")");
        System.out.println("* Optimal thread count: " + optimalthreadcount);
    }

    /**
     * Runs the {@link Runnable} over a period defined in {@link #testtime}.     * Based on Heinz Kabbutz' ideas     * (http://www.javaspecialists.eu/archive/Issue124.html).    *       * @param task   *            the runnable under investigation
     */
    public void start(Runnable task) {
        long start = 0;
        int runs = 0;
        do {
            if (++runs > 5) {
                throw new IllegalStateException("Test not accurate");
            }
            expired = false;
            start = System.currentTimeMillis();
            Timer timer = new Timer();
            timer.schedule(new TimerTask() {
                public void run() {
                    expired = true;
                }
            }, testtime);
            while (!expired) {
                task.run();
            }
            start = System.currentTimeMillis() - start;
            timer.cancel();
        } while (Math.abs(start - testtime) > EPSYLON);
        collectGarbage(3);
    }

    private void collectGarbage(int times) {
        for (int i = 0; i < times; i++) {
            System.gc();
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
                break;
            }
        }
    }

    /**
     * Calculates the memory usage of a single element in a work queue. Based on
     * Heinz Kabbutz' ideas
     * (http://www.javaspecialists.eu/archive/Issue029.html).
     *
     * @return memory usage of a single {@link Runnable} element in the thread
     * pools work queue
     */
    public long calculateMemoryUsage() {
        BlockingQueue queue = createWorkQueue();
        for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
            queue.add(creatTask());
        }
        long mem0 = Runtime.getRuntime().totalMemory()
                - Runtime.getRuntime().freeMemory();
        long mem1 = Runtime.getRuntime().totalMemory()
                - Runtime.getRuntime().freeMemory();
        queue = null;
        collectGarbage(15);
        mem0 = Runtime.getRuntime().totalMemory()
                - Runtime.getRuntime().freeMemory();
        queue = createWorkQueue();
        for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
            queue.add(creatTask());
        }
        collectGarbage(15);
        mem1 = Runtime.getRuntime().totalMemory()
                - Runtime.getRuntime().freeMemory();
        return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
    }

    /**
     * Create your runnable task here.
     *
     * @return an instance of your runnable task under investigation
     */
    protected abstract Runnable creatTask();

    /**
     * Return an instance of the queue used in the thread pool.
     *
     * @return queue instance
     */
    protected abstract BlockingQueue createWorkQueue();

    /**
     * Calculate current cpu time. Various frameworks may be used here,
     * depending on the operating system in use. (e.g.
     * http://www.hyperic.com/products/sigar). The more accurate the CPU time
     * measurement, the more accurate the results for thread count boundaries.
     *
     * @return current cpu time of current thread
     */
    protected abstract long getCurrentThreadCPUTime();
}

类使用方法如下

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.management.ManagementFactory;
import java.math.BigDecimal;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

class AsyncIOTask implements Runnable {

    @Override
    public void run() {
        HttpURLConnection connection = null;
        BufferedReader reader = null;
        try {
            String getURL = "https://www.baidu.com/";
            URL getUrl = new URL(getURL);

            connection = (HttpURLConnection) getUrl.openConnection();
            connection.connect();
            reader = new BufferedReader(new InputStreamReader(
                    connection.getInputStream()));

            String line;
            while ((line = reader.readLine()) != null) {
                // empty loop
            }
        }

        catch (IOException e) {

        } finally {
            if(reader != null) {
                try {
                    reader.close();
                }
                catch(Exception e) {

                }
            }
            connection.disconnect();
        }

    }

}


public class Main extends PoolSizeCalculator{

    @Override
    protected Runnable creatTask() {
        return new AsyncIOTask();
    }

    @Override
    protected BlockingQueue createWorkQueue() {
        return new LinkedBlockingQueue(1000);
    }

    @Override
    protected long getCurrentThreadCPUTime() {
        return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
    }

    public static void main(String[] args) {
        PoolSizeCalculator poolSizeCalculator = new Main();
        poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
    }

}

在我的一台4核电脑PC上,当期望工作队列的大小不超过100KB的情况下,对于一系列请求百度的http任务,得出的结果如下

Target queue memory usage (bytes): 100000
createTask() produced AsyncIOTask which took 40 bytes in a queue
Formula: 100000 / 40
* Recommended queue capacity (bytes): 2500
Number of CPU: 4
Target utilization: 1
Elapsed time (nanos): 3000000000
Compute time (nanos): 125000000
Wait time (nanos): 2875000000
Formula: 4 * 1 * (1 + 2875000000 / 125000000)
* Optimal thread count: 96

工作队列的大小为:2500

公式计算:4 * 1 * (1 + 2875000000 / 125000000)

线程数池大小:96

我们可以通过上面的结果创建如下线程池

ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(96,96,0L,TimeUnit.SECONDS,new LinkedBlockingQueue<>(2500));

参考链接:http://ifeve.com/how-to-calculate-threadpool-size/

上一篇 下一篇

猜你喜欢

热点阅读