代码改变世界Java那点事儿程序员

什么是动态规划?

2017-10-16  本文已影响58人  SylvanasSun

概述


动态规划(Dynamic Programming)是一种分阶段求解决策问题的数学思想,它通过把原问题分解为简单的子问题来解决复杂问题.动态规划在很多领域都有着广泛的应用,例如管理学,经济学,数学,生物学.

动态规划适用于解决带有最优子结构子问题重叠性质的问题.

动态规划与分治算法的区别


相信了解过分治算法的同学会发现,动态规划与分治算法很相似,下面我们例举出一些它们的相同之处与不同之处.

相同点

不同点

斐波那契数列


斐波那契数列就很适合使用动态规划来求解,它在数学上是使用递归来定义的,公式为F(n) = F(n-1) + F(n-2).

斐波那契数列求解过程

普通递归实现

一个最简单的实现如下.

    public int fibonacci(int n) {
        if (n < 1)
            return 0;
        if (n == 1)
            return 1;
        if (n == 2)
            return 2;

        return fibonacci(n - 1) + fibonacci(n - 2);
    }

但这种算法并不高效,它做了很多重复计算,它的时间复杂度为O(2^n).

动态规划递归实现

使用动态规划来将重复计算的结果具有"记忆性",就可以将时间复杂度降低为O(n).

    public int fibonacci(int n) {
        if (n < 1)
            return 0;
        if (n == 1)
            return 1;
        if (n == 2)
            return 2;

        // 判断当前n的结果是否已经被计算,如果map存在n则代表该结果已经计算过了
        if (map.containsKey(n))
            return map.get(n);

        int value = fibonacci(n - 1) + fibonacci(n - 2);
        map.put(n, value);
        return value;
    }

虽然降低了时间复杂度,但需要维护一个集合用于存放计算结果,导致空间复杂度提升了.

动态规划迭代实现

通过观察斐波那契数列的规律,发现n只依赖于前2种状态,所以我们可以自底向上地迭代实现.

    public int fibonacci(int n) {
        if (n < 1)
            return 0;
        if (n == 1)
            return 1;
        if (n == 2)
            return 2;

        // 使用变量a,b来保存上次迭代和上上次迭代的结果
        int a = 1;
        int b = 2;
        int temp = 0;

        for (int i = 3; i <= n; i++) {
            temp = a + b;
            a = b;
            b = temp;
        }

        return temp;
    }

这样不仅时间复杂度得到了优化,也不需要额外的空间复杂度.

参考资料


本文作者为SylvanasSun(sylvanassun_xtz@163.com),转载请务必指明原文链接.

上一篇 下一篇

猜你喜欢

热点阅读