判断二叉树2(根据二叉树的定义来判断)

2019-12-24  本文已影响0人  dwq1666666
"""
二叉搜索树定义:
    1,每个节点上都有数据
    2,当前节点的左节点数据比当前节点的数据小,并且当前节点的所有左节点数据都比当前节点的数据小
    3,当前节点的右节点数据比当前节点的数据大,并且当前节点的所有右节点数据都比当前节点的数据大
"""


class Tree:
    def __init__(self):
        self.root = None
        self.list_data = []

    def insert(self, data):

        if self.root is None:
            self.root = Node(data)
            return

        current_node = self.root

        while current_node is not Node:

            if current_node.data == data:   # 这个数据已经在里面则跳出
                return

            elif data > current_node.data:    # 当前这个节点的值小于需要插入的值
                if current_node.right is None:      # 如果右节点为空插入这个节点数据
                    current_node.right = Node(data)
                else:                               # 不为空的时候需要继续比较下一级
                    current_node = current_node.right
            else:   # 当前节点的数据大于需要插入的数据
                if current_node.left is None:
                    current_node.left = Node(data)
                else:
                    current_node = current_node.left

    def get_tree_data(self):
        self.print_node_data(self.root)

    def print_node_data(self, node):
            if node.left is not None:
                self.print_node_data(node.left)
            self.list_data.append(node.data)

            if node.right is not None:
                self.print_node_data(node.right)

    def print_tree(self, list_type=0):    # 遍历输出这颗树
        self.print_node(self.root, list_type)

    def print_node(self, node, list_type):

        if list_type == 0:  # 前序遍历
            if node.left is not None:
                self.print_node(node.left, list_type)
            print(node.data)

            if node.right is not None:
                self.print_node(node.right, list_type)
        elif list_type == 1:    # 前序遍历
            print(node.data)
            if node.left is not None:
                self.print_node(node.left, list_type)
            if node.right is not None:
                self.print_node(node.right, list_type)
        elif list_type == 2:    # 后序遍历
            if node.left is not None:
                self.print_node(node.left, list_type)
            if node.right is not None:
                self.print_node(node.right, list_type)
            print(node.data)

    # 判断是否是一颗二叉树
    def is_tree(self):
        return self.is_tree_detail(self.root)

    def is_tree_detail(self, node):
        flag = True
        if node is None:
            return flag

        # 处理当前节点的左子树
        if node.left is not None:
            if node.left.data > node.data:
                return False
            else:
                if self.is_fit(node.data, node.left) is False:
                    return False

        # 处理当前节点的右子树
        if node.right is not None:
            if node.right.data < node.data:
                return False
            else:
                if self.is_fit(node.data, node.right, 1) is False:
                    return False

        # 处理当前节点的左节点
        if self.is_tree_detail(node.left) is False:
            return False

        # 处理当前节点的右节点
        if self.is_tree_detail(node.right) is False:
            return False

        return flag

    def is_fit(self, data, node, type=0):
        flag = True

        if type == 0:   # type=0表示在比较左子树
            if node.left is not None:
                if data < node.left.data:
                    return False
                else:
                    if self.is_fit(data, node.left) is False:
                        return False

            if node.right is not None:
                if data < node.right.data:
                    return False
                else:
                    if self.is_fit(data, node.right) is False:
                        return False
        else:           # 等于1表示在比较右子树
            if node.left is not None:
                if data > node.left.data:
                    return False
                else:
                    if self.is_fit(data, node.left, type) is False:
                        return False

            if node.right is not None:
                if data > node.right.data:
                    return False
                else:
                    if self.is_fit(data, node.right, type) is False:
                        return False

        return flag


class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None


def get_node(data, node_id):

    if node_id == 0:
        return None

    for x in data:
        if x[0] == node_id:
            # print('get_node:node_id:{}'.format(node_id), x[1])
            node = Node(x[1])
            node.left = get_node(data, x[2])
            node.right = get_node(data, x[3])
            return node

    return None


def main():
    n = int(input())
    data = [[int(i) for i in input().split()] for j in range(n)]    # 一次性读入所有的数据

    # print(data)

    # 存储二叉树
    tree = Tree()
    for i in range(n):
        x = data[i]
        if x[0] == 1:
            node = Node(x[1])
            node.left = get_node(data, x[2])
            node.right = get_node(data, x[3])
            tree.root = node

    # tree.print_tree()

    # 如果是一颗二叉树的,那么得到的数据和排序后输出的数据肯定是一致的
    # flag = True

    flag = tree.is_tree()

    if flag:
        print('T')
    else:
        print('F')

    return


if __name__ == '__main__':
    main()

上一篇下一篇

猜你喜欢

热点阅读