SharedPreferences源码解析

2019-05-19  本文已影响0人  msisuzney

起因

在项目开发中发现很多数据都是用SharedPreferences做本地保存的,操作SharedPreferences只需要建立Editor,然后这个向这个Editor对象put各种各样的键值对,最后调用它的commit或者apply保存信息即可,非常简单方便。同时注释文档中说明commit是同步的而apply是异步的,说明SharedPreferences是支持多线程的,那就有些疑惑了:

下面将带着这两个问题去学习SharedPreferences的实现

分析

1.获取SP对象

调用Activity的getSharedPreferences方法,发现这是父类ContextWrapper的方法,如下:

    @Override
    public SharedPreferences getSharedPreferences(String name, int mode) {
        return mBase.getSharedPreferences(name, mode);
    }

这个方法只是再次调用mBase的相应方法,mBase是ContextImpl对象,而每一个ContextWrapper都会被绑定ContextImpl,ContextWarpper子类有Application、Service、Activity,所以在这三个常见的Context中都可以使用SP。

接着看看ContextImpl中的getSharedPreferences的实现:

    @Override
    public SharedPreferences getSharedPreferences(String name, int mode) {
        // At least one application in the world actually passes in a null
        // name.  This happened to work because when we generated the file name
        // we would stringify it to "null.xml".  Nice.
        if (mPackageInfo.getApplicationInfo().targetSdkVersion <
                Build.VERSION_CODES.KITKAT) {
            if (name == null) {
                name = "null";
            }
        }

        File file;
        synchronized (ContextImpl.class) {//用的是类锁,不是对象锁
            if (mSharedPrefsPaths == null) {
                mSharedPrefsPaths = new ArrayMap<>();
            }
            file = mSharedPrefsPaths.get(name);
            if (file == null) {
                file = getSharedPreferencesPath(name);//创建File对象,name + ".xml"
                mSharedPrefsPaths.put(name, file);
            }
        }
        return getSharedPreferences(file, mode);
    }

上面的mSharedPrefsPaths是一个Map对象,它保存的是SP的名字与文件的对应关系,如果没有对应的File就创建一个File对象,注意mSharedPrefsPaths是对象的成员,但是在操作这个对象时用的不是对象锁而是类锁,为什么?接着看最后调用的它的重载方法,如下:


    /**
     * Map from package name, to preference name, to cached preferences.
      静态的sSharedPrefsCache
     */
    private static ArrayMap<String, ArrayMap<File, SharedPreferencesImpl>> sSharedPrefsCache;

    @Override
    public SharedPreferences getSharedPreferences(File file, int mode) {
        SharedPreferencesImpl sp;
        synchronized (ContextImpl.class) {
        //file -> SP 的map
            final ArrayMap<File, SharedPreferencesImpl> cache = getSharedPreferencesCacheLocked();
            sp = cache.get(file);
            if (sp == null) {
                checkMode(mode);
                if (getApplicationInfo().targetSdkVersion >= android.os.Build.VERSION_CODES.O) {
                    if (isCredentialProtectedStorage()
                            && !getSystemService(UserManager.class)
                                    .isUserUnlockingOrUnlocked(UserHandle.myUserId())) {
                        throw new IllegalStateException("SharedPreferences in credential encrypted "
                                + "storage are not available until after user is unlocked");
                    }
                }
                sp = new SharedPreferencesImpl(file, mode);
                cache.put(file, sp);
                return sp;
            }
        }

    //获取静态的sSharedPrefsCache
    private ArrayMap<File, SharedPreferencesImpl> getSharedPreferencesCacheLocked() {
        if (sSharedPrefsCache == null) {
            sSharedPrefsCache = new ArrayMap<>();
        }

        final String packageName = getPackageName();
        ArrayMap<File, SharedPreferencesImpl> packagePrefs = sSharedPrefsCache.get(packageName);
        if (packagePrefs == null) {
            packagePrefs = new ArrayMap<>();
            sSharedPrefsCache.put(packageName, packagePrefs);
        }

       

在这里创建、返回了正儿八经干活的SharedPreferencesImpl对象,以上的分析可以总结为:获取SP时存在这样的映射关系: (对象中sp name) -> (对象 file) -> (全局的 sp)的关系,这个映射关系为了确保万无一失在操作的过程中全部使用类锁,究竟在什么情况会出错,我的单线程脑子还没想出来。。 。

2. 操作SP对象
2.1 新建与get方法

首先要明确这个SP对象它是static的,任意线程只要姿势对了都可以通过Context操作它,所以对它的操作全部都加了对象锁,构造方法如下:

    SharedPreferencesImpl(File file, int mode) {
        mFile = file;
        mBackupFile = makeBackupFile(file);
        mMode = mode;
        mLoaded = false;
        mMap = null;
        mThrowable = null;
      //加载数据
        startLoadFromDisk();
    }

    private void startLoadFromDisk() {
        synchronized (mLock) {
            mLoaded = false;
        }

        new Thread("SharedPreferencesImpl-load") {
            public void run() {
                loadFromDisk();
            }
        }.start();
    }
    //开启新的线程加载数据
    private void loadFromDisk() {
        synchronized (mLock) {
            if (mLoaded) {
                return;
            }
            if (mBackupFile.exists()) {
                mFile.delete();
                mBackupFile.renameTo(mFile);
            }
        }

        // Debugging
        if (mFile.exists() && !mFile.canRead()) {
            Log.w(TAG, "Attempt to read preferences file " + mFile + " without permission");
        }

        Map<String, Object> map = null;
        StructStat stat = null;
        Throwable thrown = null;
        try {
            stat = Os.stat(mFile.getPath());
            if (mFile.canRead()) {
                BufferedInputStream str = null;
                try {
                    str = new BufferedInputStream(
                            new FileInputStream(mFile), 16 * 1024);
                  //将XML文件转化为内存中的键值对
                    map = (Map<String, Object>) XmlUtils.readMapXml(str);
                } catch (Exception e) {
                    Log.w(TAG, "Cannot read " + mFile.getAbsolutePath(), e);
                } finally {
                    IoUtils.closeQuietly(str);
                }
            }
        } catch (ErrnoException e) {
            // An errno exception means the stat failed. Treat as empty/non-existing by
            // ignoring.
        } catch (Throwable t) {//比较豪放,任意问题都catch住
            thrown = t;
        }
    
        synchronized (mLock) {
            mLoaded = true;
            mThrowable = thrown;

            // It's important that we always signal waiters, even if we'll make
            // them fail with an exception. The try-finally is pretty wide, but
            // better safe than sorry.
            try {
                if (thrown == null) {
                    if (map != null) {
                        mMap = map;
                        mStatTimestamp = stat.st_mtim;
                        mStatSize = stat.st_size;
                    } else {
                        mMap = new HashMap<>();
                    }
                }
                // In case of a thrown exception, we retain the old map. That allows
                // any open editors to commit and store updates.
            } catch (Throwable t) {
                mThrowable = t;
            } finally {
                mLock.notifyAll();//通知其他线程加载完成了
            }
        }
    }

上面的代码中将所有保存在本地的数据都读取到了mMap中,接下来的getXXX方法都是从这个mMap中获取值

    public Map<String, ?> getAll() {
        synchronized (mLock) {
            awaitLoadedLocked();//等待锁释放
            //noinspection unchecked
            return new HashMap<String, Object>(mMap);
        }
    }

2.2 edit方法
    @Override
    public Editor edit() {
        // TODO: remove the need to call awaitLoadedLocked() when
        // requesting an editor.  will require some work on the
        // Editor, but then we should be able to do:
        //
        //      context.getSharedPreferences(..).edit().putString(..).apply()
        //
        // ... all without blocking.
        synchronized (mLock) {
            awaitLoadedLocked();
        }

        return new EditorImpl();
    }

直接返回了EditorImpl对象,它是SharedPreferences.Editor的实现类。

        //保存更改的键值对
        private final Map<String, Object> mModified = new HashMap<>();
        //
        @Override
        public Editor putBoolean(String key, boolean value) {
            synchronized (mEditorLock) {
                mModified.put(key, value);
                return this;
            }
        }

调用putXXX方法时数据被保存在了mModified键值对中,在commit或者apply的时候提交,下面先看commit方法:

        @Override
        public boolean commit() {
            long startTime = 0;

            if (DEBUG) {
                startTime = System.currentTimeMillis();
            }
            //将mModified的变化同步给mMap
            MemoryCommitResult mcr = commitToMemory();

            SharedPreferencesImpl.this.enqueueDiskWrite(
                mcr, null /* sync write on this thread okay */);
            try {
                mcr.writtenToDiskLatch.await();
            } catch (InterruptedException e) {
                return false;
            } finally {
                if (DEBUG) {
                    Log.d(TAG, mFile.getName() + ":" + mcr.memoryStateGeneration
                            + " committed after " + (System.currentTimeMillis() - startTime)
                            + " ms");
                }
            }
            notifyListeners(mcr);
            return mcr.writeToDiskResult;
        }

  private MemoryCommitResult commitToMemory() {
            long memoryStateGeneration;
            List<String> keysModified = null;
            Set<OnSharedPreferenceChangeListener> listeners = null;
            Map<String, Object> mapToWriteToDisk;

            synchronized (SharedPreferencesImpl.this.mLock) {
                // We optimistically don't make a deep copy until
                // a memory commit comes in when we're already
                // writing to disk.
                if (mDiskWritesInFlight > 0) {//此刻有其他数据正在提交
                    // We can't modify our mMap as a currently
                    // in-flight write owns it.  Clone it before
                    // modifying it.
                    // noinspection unchecked
                    mMap = new HashMap<String, Object>(mMap);
                }
                mapToWriteToDisk = mMap;
                mDiskWritesInFlight++;//正在同步+1

                boolean hasListeners = mListeners.size() > 0;
                if (hasListeners) {
                    keysModified = new ArrayList<String>();
                    listeners = new HashSet<OnSharedPreferenceChangeListener>(mListeners.keySet());
                }

                synchronized (mEditorLock) {
                    boolean changesMade = false;

                    if (mClear) {
                        if (!mapToWriteToDisk.isEmpty()) {
                            changesMade = true;
                            mapToWriteToDisk.clear();
                        }
                        mClear = false;
                    }

                    for (Map.Entry<String, Object> e : mModified.entrySet()) {
                        String k = e.getKey();
                        Object v = e.getValue();
                        // "this" is the magic value for a removal mutation. In addition,
                        // setting a value to "null" for a given key is specified to be
                        // equivalent to calling remove on that key.
                        if (v == this || v == null) {//为null删除mMap的数据
                            if (!mapToWriteToDisk.containsKey(k)) {
                                continue;
                            }
                            mapToWriteToDisk.remove(k);
                        } else {//更新mMap中的数据
                            if (mapToWriteToDisk.containsKey(k)) {
                                Object existingValue = mapToWriteToDisk.get(k);
                                if (existingValue != null && existingValue.equals(v)) {
                                    continue;
                                }
                            }
                            mapToWriteToDisk.put(k, v);
                        }

                        changesMade = true;
                        if (hasListeners) {
                            keysModified.add(k);
                        }
                    }

                    mModified.clear();

                    if (changesMade) {
                        mCurrentMemoryStateGeneration++;
                    }

                    memoryStateGeneration = mCurrentMemoryStateGeneration;
                }
            }
            return new MemoryCommitResult(memoryStateGeneration, keysModified, listeners,
                    mapToWriteToDisk);
        }

上面将mModified的键值同步给了mMap,并且返回了MemoryCommitResult对象,顾名思义它是同步的结果,它的构造方法的最后一个参数其实就是mMap对象,此刻mMap中已经同步了mModified的值,接下来就顺理成章地要将mMap转换成xml文件了,看commit()中的调用的SharedPreferencesImpl.this.enqueueDiskWrite方法:

    private void enqueueDiskWrite(final MemoryCommitResult mcr,
                                  final Runnable postWriteRunnable) {
        //是否是同步commit,commit方法中postWriteRunnable为null
        final boolean isFromSyncCommit = (postWriteRunnable == null);
        //写文件的runnable
        final Runnable writeToDiskRunnable = new Runnable() {
                @Override
                public void run() {
                    synchronized (mWritingToDiskLock) {
                        writeToFile(mcr, isFromSyncCommit);
                    }
                    synchronized (mLock) {
                        mDiskWritesInFlight--;
                    }
                    if (postWriteRunnable != null) {
                        postWriteRunnable.run();
                    }
                }
            };

        // Typical #commit() path with fewer allocations, doing a write on
        // the current thread.
        if (isFromSyncCommit) {
            boolean wasEmpty = false;
            synchronized (mLock) {//此刻只有这一个commit
                wasEmpty = mDiskWritesInFlight == 1;
            }
            
            if (wasEmpty) {//只有一个提交,就在主线程写文件了
                writeToDiskRunnable.run();
                return;
            }
        }

        QueuedWork.queue(writeToDiskRunnable, !isFromSyncCommit);
    }

接下来看apply方法:

        public void apply() {
            final long startTime = System.currentTimeMillis();
            //和commit一样,也调用了commitToMemory同步mModified
            final MemoryCommitResult mcr = commitToMemory();
            final Runnable awaitCommit = new Runnable() {
                    @Override
                    public void run() {
                        try {
                            mcr.writtenToDiskLatch.await();
                        } catch (InterruptedException ignored) {
                        }

                        if (DEBUG && mcr.wasWritten) {
                            Log.d(TAG, mFile.getName() + ":" + mcr.memoryStateGeneration
                                    + " applied after " + (System.currentTimeMillis() - startTime)
                                    + " ms");
                        }
                    }
                };

            QueuedWork.addFinisher(awaitCommit);

            Runnable postWriteRunnable = new Runnable() {
                    @Override
                    public void run() {
                        awaitCommit.run();
                        QueuedWork.removeFinisher(awaitCommit);
                    }
                };
            //也调用了enqueueDiskWrite将数据写到文件中
            SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable);

            // Okay to notify the listeners before it's hit disk
            // because the listeners should always get the same
            // SharedPreferences instance back, which has the
            // changes reflected in memory.
             notifyListeners(mcr);
        } 

apply的调用逻辑和commit是一样的都是先将mModified的数据同步给mMap。
到这里开头的第一个问题就有了答案:
不管是commit还是apply,最后都是将Editor的修改的数据同步赋值给SP的mMap对象之后才会做写文件的操作,所以apply时立即读数据,读的是内存mMap的数据,不会等待写完了然后再读文件,要等待也只是等待同步的过程。

apply调用enqueueDiskWrite写文件时postWriteRunnable不为null,直接跳到 enqueueDiskWrite方法的QueuedWork.queue处,将任务进队列了,而QueuedWork是什么?结合apply的异步写功能,很容易想到它是一个排队执行的异步线程,QueuedWork如下:

public class QueuedWork {

    private static final Object sLock = new Object();

    private static Object sProcessingWork = new Object();

    private static Handler sHandler = null;

    private static final LinkedList<Runnable> sWork = new LinkedList<>();

   //新建HandlerThread 线程以及一个对应的QueuedWorkHandler
    private static Handler getHandler() {
        synchronized (sLock) {
            if (sHandler == null) {
                HandlerThread handlerThread = new HandlerThread("queued-work-looper",
                        Process.THREAD_PRIORITY_FOREGROUND);
                handlerThread.start();
                //
                sHandler = new QueuedWorkHandler(handlerThread.getLooper());
            }
            return sHandler;
        }
    }

 

  //进队列方法,将work保存到sWork中,并通知使用handler去通知handlerThread执行
    public static void queue(Runnable work, boolean shouldDelay) {
        Handler handler = getHandler();

        synchronized (sLock) {
            sWork.add(work);

            if (shouldDelay && sCanDelay) {
                handler.sendEmptyMessageDelayed(QueuedWorkHandler.MSG_RUN, DELAY);
            } else {
                handler.sendEmptyMessage(QueuedWorkHandler.MSG_RUN);
            }
        }
    }

    /**
     * @return True iff there is any {@link #queue async work queued}.
     */
    public static boolean hasPendingWork() {
        synchronized (sLock) {
            return !sWork.isEmpty();
        }
    }
    //取出sWork中的runnable挨个执行
    private static void processPendingWork() {
        long startTime = 0;

        if (DEBUG) {
            startTime = System.currentTimeMillis();
        }

        synchronized (sProcessingWork) {
            LinkedList<Runnable> work;

            synchronized (sLock) {
                work = (LinkedList<Runnable>) sWork.clone();
                sWork.clear();

                // Remove all msg-s as all work will be processed now
                getHandler().removeMessages(QueuedWorkHandler.MSG_RUN);
            }

            if (work.size() > 0) {
                for (Runnable w : work) {
                    w.run();
                }

                if (DEBUG) {
                    Log.d(LOG_TAG, "processing " + work.size() + " items took " +
                            +(System.currentTimeMillis() - startTime) + " ms");
                }
            }
        }
    }


  /**
     * Trigger queued work to be processed immediately. The queued work is processed on a separate
     * thread asynchronous. While doing that run and process all finishers on this thread. The
     * finishers can be implemented in a way to check weather the queued work is finished.
     *
     * Is called from the Activity base class's onPause(), after BroadcastReceiver's onReceive,
     * after Service command handling, etc. (so async work is never lost)
     */
    public static void waitToFinish() {
        long startTime = System.currentTimeMillis();
        boolean hadMessages = false;

        Handler handler = getHandler();

        synchronized (sLock) {
            if (handler.hasMessages(QueuedWorkHandler.MSG_RUN)) {
                // Delayed work will be processed at processPendingWork() below
                handler.removeMessages(QueuedWorkHandler.MSG_RUN);

                if (DEBUG) {
                    hadMessages = true;
                    Log.d(LOG_TAG, "waiting");
                }
            }

            // We should not delay any work as this might delay the finishers
            sCanDelay = false;
        }

        StrictMode.ThreadPolicy oldPolicy = StrictMode.allowThreadDiskWrites();
        try {
            processPendingWork();
        } finally {
            StrictMode.setThreadPolicy(oldPolicy);
        }

    }


    private static class QueuedWorkHandler extends Handler {
        static final int MSG_RUN = 1;

        QueuedWorkHandler(Looper looper) {
            super(looper);
        }

        public void handleMessage(Message msg) {
            if (msg.what == MSG_RUN) {
                processPendingWork();
            }
        }
    }
}

QueuedWork封装了HandlerThread,queue方法将runnable保存到sWork中,并通知使用handler去通知handlerThread取sWork中的runnable执行,最后在子线程调用processPendingWork取出sWork中的runnable挨个执行,这时退出应用会怎么样?
QueuedWork有一个waitToFinish方法,看这个方法名大致知道它是退出前的被调用的方法,它被调用地方如下图:


调用waitToFinish的地方

一目了然,在Activity、Service stop的时候会调用这个方法。再看看这个方法的实现,等待HandlerThread中的上一个runnable结束后,判断这个线程的Looper的队列中是否有消息,如果有就接管这个事件,取sWork中所有的Runnable在主线程执行。

所以,退出Activity、退出应用不会导致apply的数据丢失,它会在退出时将异步线程切换到主线程来执行,等待数据都保存了才会退出。

参考 : SharedPreferences的使用及源码浅析

上一篇 下一篇

猜你喜欢

热点阅读