Sharding-JDBC 分库配置解析过程
2020-06-14 本文已影响0人
晴天哥_王志
系列
- Sharding-JDBC 核心组件介绍
- Sharding-JDBC 配置分析
- Sharding-JDBC 执行整体流程
- Sharding-JDBC 分库配置解析过程
- Sharding-JDBC 分表配置解析过程
- Sharding-JDBC 分库分表配置解析过程
开篇
- 案例代码参考shardingsphere-example,版本基于4.0.0的tag版本。
- 这篇文章用来分析分库配置的整个解析过程,根据shardingRuleConfig来生成shardingRule对象。
- shardingRule包含核心变量tableRules,本质上是TableRule的列表。
- shardingRule包含核心变量defaultDatabaseShardingStrategy,用于分库的策略。
- TableRule包含逻辑表名logicTable和对应的实际存储节点名actualDataNodes。
- 核心变量的关系图主要包含ShardingRule和TableRule。
- ShardingRule和TableRule的关系为1:N。
分库分表策略
支持策略
public enum ShardingType {
// 分库
SHARDING_DATABASES,
// 分表
SHARDING_TABLES,
// 分库分表
SHARDING_DATABASES_AND_TABLES,
// 主从
MASTER_SLAVE,
// 分片下的主从
SHARDING_MASTER_SLAVE,
// 加密
ENCRYPT
}
- 支持分库、分表、分库分表、主从、分片下的主从、加密等共6种场景。
精确值的分库分表策略
public class DataSourceFactory {
// 精确值的分库分表策略
public static DataSource newInstance(final ShardingType shardingType) throws SQLException {
switch (shardingType) {
// 分库
case SHARDING_DATABASES:
return new ShardingDatabasesConfigurationPrecise().getDataSource();
// 分表
case SHARDING_TABLES:
return new ShardingTablesConfigurationPrecise().getDataSource();
// 分库分表
case SHARDING_DATABASES_AND_TABLES:
return new ShardingDatabasesAndTablesConfigurationPrecise().getDataSource();
// 主从
case MASTER_SLAVE:
return new MasterSlaveConfiguration().getDataSource();
// 分片场景下的主从
case SHARDING_MASTER_SLAVE:
return new ShardingMasterSlaveConfigurationPrecise().getDataSource();
default:
throw new UnsupportedOperationException(shardingType.name());
}
}
}
- 按照精确值进行分库分表策略配置对象。
- 支持分库、分表、分库分表、主从、分片的主从等5类场景。
范围值的分库分表策略
public class RangeDataSourceFactory {
// 范围值的分库分表策略
public static DataSource newInstance(final ShardingType shardingType) throws SQLException {
switch (shardingType) {
// 分库
case SHARDING_DATABASES:
return new ShardingDatabasesConfigurationRange().getDataSource();
// 分表
case SHARDING_TABLES:
return new ShardingTablesConfigurationRange().getDataSource();
// 分库分表
case SHARDING_DATABASES_AND_TABLES:
return new ShardingDatabasesAndTablesConfigurationRange().getDataSource();
// 主从
case MASTER_SLAVE:
return new MasterSlaveConfiguration().getDataSource();
// 分片下的主从关系
case SHARDING_MASTER_SLAVE:
return new ShardingMasterSlaveConfigurationRange().getDataSource();
default:
throw new UnsupportedOperationException(shardingType.name());
}
}
}
- 按照范围值进行分库分表策略配置对象。
- 支持分库、分表、分库分表、主从、分片的主从等5类场景。
精确值分库配置
配置的源码实现
public final class ShardingDatabasesConfigurationPrecise implements ExampleConfiguration {
@Override
public DataSource getDataSource() throws SQLException {
// 创建shardingRuleConfig对象
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
// 绑定order/order_item表的配置信息
shardingRuleConfig.getTableRuleConfigs().add(getOrderTableRuleConfiguration());
shardingRuleConfig.getTableRuleConfigs().add(getOrderItemTableRuleConfiguration());
shardingRuleConfig.getBroadcastTables().add("t_address");
// 设置分库策略配置
shardingRuleConfig.setDefaultDatabaseShardingStrategyConfig(new InlineShardingStrategyConfiguration("user_id", "demo_ds_${user_id % 2}"));
// 根据dataSource和shardingRuleConfig创建dataSource对象
return ShardingDataSourceFactory.createDataSource(createDataSourceMap(), shardingRuleConfig, new Properties());
}
private static TableRuleConfiguration getOrderTableRuleConfiguration() {
TableRuleConfiguration result = new TableRuleConfiguration("t_order");
result.setKeyGeneratorConfig(new KeyGeneratorConfiguration("SNOWFLAKE", "order_id", getProperties()));
return result;
}
private static TableRuleConfiguration getOrderItemTableRuleConfiguration() {
TableRuleConfiguration result = new TableRuleConfiguration("t_order_item");
result.setKeyGeneratorConfig(new KeyGeneratorConfiguration("SNOWFLAKE", "order_item_id", getProperties()));
return result;
}
private static Map<String, DataSource> createDataSourceMap() {
Map<String, DataSource> result = new HashMap<>();
result.put("demo_ds_0", DataSourceUtil.createDataSource("demo_ds_0"));
result.put("demo_ds_1", DataSourceUtil.createDataSource("demo_ds_1"));
return result;
}
private static Properties getProperties() {
Properties result = new Properties();
result.setProperty("worker.id", "123");
return result;
}
}
- 配置两个dataSource,分别是demo_ds_0和demo_ds_1。
- 配置分库的逻辑DatabaseShardingStrategyConfig,分库的列为user_id,分库的表达式为demo_ds_${user_id % 2}。
配置的json格式
{
"bindingTableGroups":[],
"broadcastTables":["t_address"],
"defaultDatabaseShardingStrategyConfig":{
"algorithmExpression":"demo_ds_${user_id % 2}",
"shardingColumn":"user_id"
},
"masterSlaveRuleConfigs":[
],
"tableRuleConfigs":[
{
"keyGeneratorConfig":{
"column":"order_id",
"properties":{
"worker.id":"123"
},
"type":"SNOWFLAKE"
},
"logicTable":"t_order"
},
{
"keyGeneratorConfig":{
"column":"order_item_id",
"properties":{
"worker.id":"123"
},
"type":"SNOWFLAKE"
},
"logicTable":"t_order_item"
}]
}
- 分库配置的json格式展示,核心关注分库策略和t_order及t_order_item表。
- defaultDatabaseShardingStrategyConfig为分库的策略,包含分库的列user_id和分库的逻辑策略demo_ds_${user_id % 2}。
配置规则的解析
public final class ShardingDataSourceFactory {
public static DataSource createDataSource(
final Map<String, DataSource> dataSourceMap, final ShardingRuleConfiguration shardingRuleConfig, final Properties props) throws SQLException {
// 根据ShardingRuleConfiguration生成ShardingRule
return new ShardingDataSource(dataSourceMap, new ShardingRule(shardingRuleConfig, dataSourceMap.keySet()), props);
}
}
- 基于shardingRuleConfig和dataSourceMap生成ShardingRule对象。
public class ShardingRule implements BaseRule {
private final ShardingRuleConfiguration ruleConfiguration;
private final ShardingDataSourceNames shardingDataSourceNames;
private final Collection<TableRule> tableRules;
private final Collection<BindingTableRule> bindingTableRules;
private final Collection<String> broadcastTables;
private final ShardingStrategy defaultDatabaseShardingStrategy;
private final ShardingStrategy defaultTableShardingStrategy;
private final ShardingKeyGenerator defaultShardingKeyGenerator;
private final Collection<MasterSlaveRule> masterSlaveRules;
private final EncryptRule encryptRule;
public ShardingRule(final ShardingRuleConfiguration shardingRuleConfig, final Collection<String> dataSourceNames) {
Preconditions.checkArgument(null != shardingRuleConfig, "ShardingRuleConfig cannot be null.");
Preconditions.checkArgument(null != dataSourceNames && !dataSourceNames.isEmpty(), "Data sources cannot be empty.");
// 1、分片规则
this.ruleConfiguration = shardingRuleConfig;
// 2、解析生成数据源名字
shardingDataSourceNames = new ShardingDataSourceNames(shardingRuleConfig, dataSourceNames);
// 3、生成TableRule
tableRules = createTableRules(shardingRuleConfig);
// 4、生成broadcastTables
broadcastTables = shardingRuleConfig.getBroadcastTables();
// 5、生成BindingTableRule
bindingTableRules = createBindingTableRules(shardingRuleConfig.getBindingTableGroups());
// 6、生成分库策略defaultDatabaseShardingStrategy
defaultDatabaseShardingStrategy = createDefaultShardingStrategy(shardingRuleConfig.getDefaultDatabaseShardingStrategyConfig());
// 7、生成分表策略defaultTableShardingStrategy
defaultTableShardingStrategy = createDefaultShardingStrategy(shardingRuleConfig.getDefaultTableShardingStrategyConfig());
// 8、生成分片key的生成器defaultShardingKeyGenerator
defaultShardingKeyGenerator = createDefaultKeyGenerator(shardingRuleConfig.getDefaultKeyGeneratorConfig());
// 9、生成MasterSlaveRule
masterSlaveRules = createMasterSlaveRules(shardingRuleConfig.getMasterSlaveRuleConfigs());
// 10、生成EncryptRule
encryptRule = createEncryptRule(shardingRuleConfig.getEncryptRuleConfig());
}
}
- 整体逻辑的注释如上所示,核心关注tableRules和defaultDatabaseShardingStrategy。
- ShardingDataSourceNames记录分库的数据源。
- ShardingRule包含tableRules,TableRule记录分库后的表规则。
- defaultDatabaseShardingStrategy表示database的分库策略。
public final class ShardingDataSourceNames {
private final ShardingRuleConfiguration shardingRuleConfig;
@Getter
private final Collection<String> dataSourceNames;
public ShardingDataSourceNames(final ShardingRuleConfiguration shardingRuleConfig, final Collection<String> rawDataSourceNames) {
Preconditions.checkArgument(null != shardingRuleConfig, "can not construct ShardingDataSourceNames with null ShardingRuleConfig");
this.shardingRuleConfig = shardingRuleConfig;
dataSourceNames = getAllDataSourceNames(rawDataSourceNames);
}
private Collection<String> getAllDataSourceNames(final Collection<String> dataSourceNames) {
Collection<String> result = new LinkedHashSet<>(dataSourceNames);
for (MasterSlaveRuleConfiguration each : shardingRuleConfig.getMasterSlaveRuleConfigs()) {
result.remove(each.getMasterDataSourceName());
result.removeAll(each.getSlaveDataSourceNames());
result.add(each.getName());
}
return result;
}
}
- ShardingDataSourceNames的生成规则为包含传入的dataSourceNames,然后排除MasterSlaveRuleConfiguration的主从的DataSourceNames并添加对应的name。
- 在分库的场景下dataSourceNames为["demo_ds_1","demo_ds_0"]。
public class ShardingRule implements BaseRule {
private Collection<TableRule> createTableRules(final ShardingRuleConfiguration shardingRuleConfig) {
// 1、getTableRuleConfigs的结果可以参考分库的json格式配置内容
Collection<TableRuleConfiguration> tableRuleConfigurations = shardingRuleConfig.getTableRuleConfigs();
// 每个表对应一个TableRule对象
Collection<TableRule> result = new ArrayList<>(tableRuleConfigurations.size());
// 2、遍历tableRuleConfigurations生成TableRule
for (TableRuleConfiguration each : tableRuleConfigurations) {
// 3、每个table对应一个TableRuleConfiguration,每个TableRuleConfiguration生成TableRule对象
result.add(new TableRule(each, shardingDataSourceNames, getDefaultGenerateKeyColumn(shardingRuleConfig)));
}
return result;
}
private String getDefaultGenerateKeyColumn(final ShardingRuleConfiguration shardingRuleConfig) {
return null == shardingRuleConfig.getDefaultKeyGeneratorConfig() ? null : shardingRuleConfig.getDefaultKeyGeneratorConfig().getColumn();
}
}
public final class TableRule {
private final String logicTable;
private final List<DataNode> actualDataNodes;
private final Set<String> actualTables;
private final Map<DataNode, Integer> dataNodeIndexMap;
private final ShardingStrategy databaseShardingStrategy;
private final ShardingStrategy tableShardingStrategy;
private final String generateKeyColumn;
private final ShardingKeyGenerator shardingKeyGenerator;
private final Collection<String> actualDatasourceNames = new LinkedHashSet<>();
private final Map<String, Collection<String>> datasourceToTablesMap = new HashMap<>();
public TableRule(final TableRuleConfiguration tableRuleConfig, final ShardingDataSourceNames shardingDataSourceNames, final String defaultGenerateKeyColumn) {
// 生成逻辑表名logicTable
logicTable = tableRuleConfig.getLogicTable().toLowerCase();
// 解析actualNodes生成dataNodes,分库的场景下这个值为actualDataNodes为空
List<String> dataNodes = new InlineExpressionParser(tableRuleConfig.getActualDataNodes()).splitAndEvaluate();
dataNodeIndexMap = new HashMap<>(dataNodes.size(), 1);
// 生成实际的DataNode节点,不同场景使用不同的策略
actualDataNodes = isEmptyDataNodes(dataNodes)
? generateDataNodes(tableRuleConfig.getLogicTable(), shardingDataSourceNames.getDataSourceNames()) : generateDataNodes(dataNodes, shardingDataSourceNames.getDataSourceNames());
// 获取实际的表名,获取actualDataNode种DataNode的表名
actualTables = getActualTables();
// 分库策略
databaseShardingStrategy = null == tableRuleConfig.getDatabaseShardingStrategyConfig() ? null : ShardingStrategyFactory.newInstance(tableRuleConfig.getDatabaseShardingStrategyConfig());
// 分表策略
tableShardingStrategy = null == tableRuleConfig.getTableShardingStrategyConfig() ? null : ShardingStrategyFactory.newInstance(tableRuleConfig.getTableShardingStrategyConfig());
// 生成key的列名
generateKeyColumn = getGenerateKeyColumn(tableRuleConfig.getKeyGeneratorConfig(), defaultGenerateKeyColumn);
// key的生成器
shardingKeyGenerator = containsKeyGeneratorConfiguration(tableRuleConfig)
? new ShardingKeyGeneratorServiceLoader().newService(tableRuleConfig.getKeyGeneratorConfig().getType(), tableRuleConfig.getKeyGeneratorConfig().getProperties()) : null;
checkRule(dataNodes);
}
private List<DataNode> generateDataNodes(final String logicTable, final Collection<String> dataSourceNames) {
List<DataNode> result = new LinkedList<>();
int index = 0;
for (String each : dataSourceNames) {
// DataNode包含表名logicTable和dataSourceName
DataNode dataNode = new DataNode(each, logicTable);
result.add(dataNode);
dataNodeIndexMap.put(dataNode, index);
actualDatasourceNames.add(each);
addActualTable(dataNode.getDataSourceName(), dataNode.getTableName());
index++;
}
return result;
}
}
public final class DataNode {
private static final String DELIMITER = ".";
// 所属的数据源
private final String dataSourceName;
// 逻辑表名
private final String tableName;
}
- TableRule记录的是每个表的分库后的结果。
- TableRule的核心变量包括logicTable逻辑、actualDataNodes实际数据存储节点、databaseShardingStrategy分库策略。
- 分库场景下逻辑表就是在配置时候指定的,如t_order和t_order_item表。
- 分库场景下actualDataNodes(实际节点)是将逻辑表名和数据源进行笛卡尔积,本质上一个逻辑表对应多个数据源。
- t_order和t_order_item包含demo_ds_0和demo_ds_1两个dataSource,所以t_order结合dataSource生成两个DataNode,t_order_item相同。
public final class ShardingStrategyFactory {
public static ShardingStrategy newInstance(final ShardingStrategyConfiguration shardingStrategyConfig) {
if (shardingStrategyConfig instanceof StandardShardingStrategyConfiguration) {
return new StandardShardingStrategy((StandardShardingStrategyConfiguration) shardingStrategyConfig);
}
if (shardingStrategyConfig instanceof InlineShardingStrategyConfiguration) {
// 分库场景下是分库策略为InlineShardingStrategy对象
return new InlineShardingStrategy((InlineShardingStrategyConfiguration) shardingStrategyConfig);
}
if (shardingStrategyConfig instanceof ComplexShardingStrategyConfiguration) {
return new ComplexShardingStrategy((ComplexShardingStrategyConfiguration) shardingStrategyConfig);
}
if (shardingStrategyConfig instanceof HintShardingStrategyConfiguration) {
return new HintShardingStrategy((HintShardingStrategyConfiguration) shardingStrategyConfig);
}
return new NoneShardingStrategy();
}
}
public interface ShardingStrategy {
Collection<String> getShardingColumns();
Collection<String> doSharding(Collection<String> availableTargetNames, Collection<RouteValue> shardingValues);
}
public final class InlineShardingStrategy implements ShardingStrategy {
private final String shardingColumn;
private final Closure<?> closure;
public InlineShardingStrategy(final InlineShardingStrategyConfiguration inlineShardingStrategyConfig) {
Preconditions.checkNotNull(inlineShardingStrategyConfig.getShardingColumn(), "Sharding column cannot be null.");
Preconditions.checkNotNull(inlineShardingStrategyConfig.getAlgorithmExpression(), "Sharding algorithm expression cannot be null.");
// 分片的列名
shardingColumn = inlineShardingStrategyConfig.getShardingColumn();
// 分片的表达式
String algorithmExpression = InlineExpressionParser.handlePlaceHolder(inlineShardingStrategyConfig.getAlgorithmExpression().trim());
// 根据分片的表达式生成执行闭包
closure = new InlineExpressionParser(algorithmExpression).evaluateClosure();
}
@Override
public Collection<String> doSharding(final Collection<String> availableTargetNames, final Collection<RouteValue> shardingValues) {
RouteValue shardingValue = shardingValues.iterator().next();
Preconditions.checkState(shardingValue instanceof ListRouteValue, "Inline strategy cannot support range sharding.");
// 根据查询值ListRouteValue来执行分片操作
Collection<String> shardingResult = doSharding((ListRouteValue) shardingValue);
Collection<String> result = new TreeSet<>(String.CASE_INSENSITIVE_ORDER);
for (String each : shardingResult) {
if (availableTargetNames.contains(each)) {
result.add(each);
}
}
return result;
}
private Collection<String> doSharding(final ListRouteValue shardingValue) {
Collection<String> result = new LinkedList<>();
// 将shardingValue转为PreciseShardingValue
for (PreciseShardingValue<?> each : transferToPreciseShardingValues(shardingValue)) {
// 通过执行execute方法来将分片值通过分片表达式来进行执行并返回结果
result.add(execute(each));
}
return result;
}
@SuppressWarnings("unchecked")
private List<PreciseShardingValue> transferToPreciseShardingValues(final ListRouteValue<?> shardingValue) {
// 将分片的值转为PreciseShardingValue对象
List<PreciseShardingValue> result = new ArrayList<>(shardingValue.getValues().size());
for (Comparable<?> each : shardingValue.getValues()) {
result.add(new PreciseShardingValue(shardingValue.getTableName(), shardingValue.getColumnName(), each));
}
return result;
}
private String execute(final PreciseShardingValue shardingValue) {
// 将分片值通过分片表达式的闭包执行并返回结果
Closure<?> result = closure.rehydrate(new Expando(), null, null);
result.setResolveStrategy(Closure.DELEGATE_ONLY);
result.setProperty(shardingColumn, shardingValue.getValue());
return result.call().toString();
}
}
- ShardingStrategyFactory为分片策略工程,分库场景为InlineShardingStrategy对象。
- InlineShardingStrategy包含分片的列shardingColumn和分片的表达式algorithmExpression,同时根据algorithmExpression来生成执行闭包closure。
- doSharding过程根据ListRouteValue的值通过分片表达式闭包计算分片结果。
public final class ListRouteValue<T extends Comparable<?>> implements RouteValue {
// 列名
private final String columnName;
// 表名
private final String tableName;
// 对应的值
private final Collection<T> values;
@Override
public String toString() {
return tableName + "." + columnName + (1 == values.size() ? " = " + new ArrayList<>(values).get(0) : " in (" + Joiner.on(",").join(values) + ")");
}
}
- ListRouteValue对象包含表名、列名和对应的值。
- 分片策略的类关系图。