数据结构和算法分析程序猿阵线联盟-汇总各类技术干货算法

布隆过滤器(Bloom Filter)原理及Guava中的具体实

2019-04-26  本文已影响70人  LittleMagic

目录

引子

最近在研究推荐系统中已读内容排除以及重复内容去重相关的问题,布隆过滤器是解决这类问题最好的工具之一,很值得专门写一篇文章来详细讲解。

布隆过滤器介绍

布隆过滤器(Bloom Filter,下文简称BF)由Burton Howard Bloom在1970年提出,是一种空间效率高的概率型数据结构。它专门用来检测集合中是否存在特定的元素。听起来是很稀松平常的需求,为什么要使用BF这种数据结构呢?

产生的契机

回想一下,我们平常在检测集合中是否存在某元素时,都会采用比较的方法。考虑以下情况:

总而言之,当集合中元素的数量极多时,不仅查找会变得很慢,而且占用的空间也会大到无法想象。BF就是解决这个矛盾的利器。

设计思想

BF是由一个长度为m比特的位数组(bit array)k个哈希函数(hash function)组成的数据结构。位数组均初始化为0,所有哈希函数都可以分别把输入数据尽量均匀地散列。

当要插入一个元素时,将其数据分别输入k个哈希函数,产生k个哈希值。以哈希值作为位数组中的下标,将所有k个对应的比特置为1。

当要查询(即判断是否存在)一个元素时,同样将其数据输入哈希函数,然后检查对应的k个比特。如果有任意一个比特为0,表明该元素一定不在集合中。如果所有比特均为1,表明该集合有(较大的)可能性在集合中。为什么不是一定在集合中呢?因为一个比特被置为1有可能会受到其他元素的影响,这就是所谓“假阳性”(false positive)。相对地,“假阴性”(false negative)在BF中是绝不会出现的。

下图示出一个m=18, k=3的BF示例。集合中的x、y、z三个元素通过3个不同的哈希函数散列到位数组中。当查询元素w时,因为有一个比特为0,因此w不在该集合中。


优缺点与用途

BF的优点是显而易见的:

但是,它的缺点也同样明显:

所以,BF在对查准度要求没有那么苛刻,而对时间、空间效率要求较高的场合非常合适,本文第一句话提到的用途即属于此类。另外,由于它不存在假阴性问题,所以用作“不存在”逻辑的处理时有奇效,比如可以用来作为缓存系统(如Redis)的缓冲,防止缓存穿透。

假阳性率的计算

假阳性是BF最大的痛点,因此有必要权衡,比如计算一下假阳性的概率。为了简单一点,就假设我们的哈希函数选择位数组中的比特时,都是等概率的。当然在设计哈希函数时,也应该尽量满足均匀分布。

在位数组长度m的BF中插入一个元素,它的其中一个哈希函数会将某个特定的比特置为1。因此,在插入元素后,该比特仍然为0的概率是: 现有k个哈希函数,并插入n个元素,自然就可以得到该比特仍然为0的概率是: 反过来讲,它已经被置为1的概率就是: 也就是说,如果在插入n个元素后,我们用一个不在集合中的元素来检测,那么被误报为存在于集合中的概率(也就是所有哈希函数对应的比特都为1的概率)为: 当n比较大时,根据重要极限公式,可以近似得出假阳性率:

所以,在哈希函数的个数k一定的情况下:

事实上,即使哈希函数不是等概率选择比特的,最终也会得出相同的结果,可以借助吾妻-霍夫丁不等式(Azuma-Hoeffding inequality)证明。我数学比较垃圾,就不班门弄斧了。

有一些框架内已经内建了BF的实现,免去了自己实现的烦恼。下面以Guava为例,看看Google是怎么做的。

Guava中的布隆过滤器

采用Guava 27.0.1版本的源码,BF的具体逻辑位于com.google.common.hash.BloomFilter类中。开始读代码吧。

BloomFilter类的成员属性

不多,只有4个。

  /** The bit set of the BloomFilter (not necessarily power of 2!) */
  private final LockFreeBitArray bits;

  /** Number of hashes per element */
  private final int numHashFunctions;

  /** The funnel to translate Ts to bytes */
  private final Funnel<? super T> funnel;

  /** The strategy we employ to map an element T to {@code numHashFunctions} bit indexes. */
  private final Strategy strategy;
BloomFilter的构造

这个类的构造方法是私有的。要创建它的实例,应该通过公有的create()方法。它一共有5种重载方法,但最终都是调用了如下的逻辑。

  @VisibleForTesting
  static <T> BloomFilter<T> create(
      Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
    checkNotNull(funnel);
    checkArgument(
        expectedInsertions >= 0, "Expected insertions (%s) must be >= 0", expectedInsertions);
    checkArgument(fpp > 0.0, "False positive probability (%s) must be > 0.0", fpp);
    checkArgument(fpp < 1.0, "False positive probability (%s) must be < 1.0", fpp);
    checkNotNull(strategy);

    if (expectedInsertions == 0) {
      expectedInsertions = 1;
    }
    /*
     * TODO(user): Put a warning in the javadoc about tiny fpp values, since the resulting size
     * is proportional to -log(p), but there is not much of a point after all, e.g.
     * optimalM(1000, 0.0000000000000001) = 76680 which is less than 10kb. Who cares!
     */
    long numBits = optimalNumOfBits(expectedInsertions, fpp);
    int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits);
    try {
      return new BloomFilter<T>(new LockFreeBitArray(numBits), numHashFunctions, funnel, strategy);
    } catch (IllegalArgumentException e) {
      throw new IllegalArgumentException("Could not create BloomFilter of " + numBits + " bits", e);
    }
  }

该方法接受4个参数:funnel是插入数据的Funnel,expectedInsertions是期望插入的元素总个数n,fpp即期望假阳性率p,strategy即哈希策略。

由上可知,位数组的长度m和哈希函数的个数k分别通过optimalNumOfBits()方法和optimalNumOfHashFunctions()方法来估计。

估计最优m值和k值
  @VisibleForTesting
  static long optimalNumOfBits(long n, double p) {
    if (p == 0) {
      p = Double.MIN_VALUE;
    }
    return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
  }

  @VisibleForTesting
  static int optimalNumOfHashFunctions(long n, long m) {
    // (m / n) * log(2), but avoid truncation due to division!
    return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
  }

要看懂这两个方法,我们得接着上一节的推导继续做下去。

由假阳性率的近似计算方法可知,如果要使假阳性率尽量小,在m和n给定的情况下,k值应为:

这就是optimalNumOfHashFunctions()方法的逻辑。那么m该如何估计呢?

将k代入上一节的式子并化简,我们可以整理出期望假阳性率p与m、n的关系: 亦即:

这就是optimalNumOfBits()方法的逻辑。

从上也可以得出:

所以,在创建BloomFilter时,确定合适的p和n值很重要。

哈希策略

在BloomFilterStrategies枚举中定义了两种哈希策略,都基于著名的MurmurHash算法,分别是MURMUR128_MITZ_32和MURMUR128_MITZ_64。前者是一个简化版,所以我们来看看后者的实现方法。

  MURMUR128_MITZ_64() {
    @Override
    public <T> boolean put(
        T object, Funnel<? super T> funnel, int numHashFunctions, LockFreeBitArray bits) {
      long bitSize = bits.bitSize();
      byte[] bytes = Hashing.murmur3_128().hashObject(object, funnel).getBytesInternal();
      long hash1 = lowerEight(bytes);
      long hash2 = upperEight(bytes);

      boolean bitsChanged = false;
      long combinedHash = hash1;
      for (int i = 0; i < numHashFunctions; i++) {
        // Make the combined hash positive and indexable
        bitsChanged |= bits.set((combinedHash & Long.MAX_VALUE) % bitSize);
        combinedHash += hash2;
      }
      return bitsChanged;
    }

    @Override
    public <T> boolean mightContain(
        T object, Funnel<? super T> funnel, int numHashFunctions, LockFreeBitArray bits) {
      long bitSize = bits.bitSize();
      byte[] bytes = Hashing.murmur3_128().hashObject(object, funnel).getBytesInternal();
      long hash1 = lowerEight(bytes);
      long hash2 = upperEight(bytes);

      long combinedHash = hash1;
      for (int i = 0; i < numHashFunctions; i++) {
        // Make the combined hash positive and indexable
        if (!bits.get((combinedHash & Long.MAX_VALUE) % bitSize)) {
          return false;
        }
        combinedHash += hash2;
      }
      return true;
    }

    private /* static */ long lowerEight(byte[] bytes) {
      return Longs.fromBytes(
          bytes[7], bytes[6], bytes[5], bytes[4], bytes[3], bytes[2], bytes[1], bytes[0]);
    }

    private /* static */ long upperEight(byte[] bytes) {
      return Longs.fromBytes(
          bytes[15], bytes[14], bytes[13], bytes[12], bytes[11], bytes[10], bytes[9], bytes[8]);
    }
  };

其中put()方法负责向布隆过滤器中插入元素,mightContain()方法负责判断元素是否存在。以put()方法为例讲解一下流程吧。

  1. 使用MurmurHash算法对funnel的输入数据进行散列,得到128bit(16B)的字节数组。
  2. 取低8字节作为第一个哈希值hash1,取高8字节作为第二个哈希值hash2。
  3. 进行k次循环,每次循环都用hash1与hash2的复合哈希做散列,然后对m取模,将位数组中的对应比特设为1。

这里需要注意两点:

位数组具体实现

来看LockFreeBitArray类的部分代码。

  static final class LockFreeBitArray {
    private static final int LONG_ADDRESSABLE_BITS = 6;
    final AtomicLongArray data;
    private final LongAddable bitCount;

    LockFreeBitArray(long bits) {
      this(new long[Ints.checkedCast(LongMath.divide(bits, 64, RoundingMode.CEILING))]);
    }

    // Used by serialization
    LockFreeBitArray(long[] data) {
      checkArgument(data.length > 0, "data length is zero!");
      this.data = new AtomicLongArray(data);
      this.bitCount = LongAddables.create();
      long bitCount = 0;
      for (long value : data) {
        bitCount += Long.bitCount(value);
      }
      this.bitCount.add(bitCount);
    }

    /** Returns true if the bit changed value. */
    boolean set(long bitIndex) {
      if (get(bitIndex)) {
        return false;
      }

      int longIndex = (int) (bitIndex >>> LONG_ADDRESSABLE_BITS);
      long mask = 1L << bitIndex; // only cares about low 6 bits of bitIndex

      long oldValue;
      long newValue;
      do {
        oldValue = data.get(longIndex);
        newValue = oldValue | mask;
        if (oldValue == newValue) {
          return false;
        }
      } while (!data.compareAndSet(longIndex, oldValue, newValue));

      // We turned the bit on, so increment bitCount.
      bitCount.increment();
      return true;
    }

    boolean get(long bitIndex) {
      return (data.get((int) (bitIndex >>> 6)) & (1L << bitIndex)) != 0;
    }
    // ....
}

看官应该能明白为什么它要叫做“LockFree”BitArray了,因为它是采用原子类型AtomicLongArray作为位数组的存储的。另外还有一个Guava中特有的LongAddable类型的计数器,用来统计置为1的比特数。

采用AtomicLongArray除了有并发上的优势之外,更主要的是它可以表示非常长的位数组。一个长整型数占用64bit,因此data[0]可以代表第0~63bit,data[1]代表64~127bit,data[2]代表128~191bit……依次类推。这样设计的话,将下标i无符号右移6位就可以获得data数组中对应的位置,再在其基础上左移i位就可以取得对应的比特了。

最后多嘴一句,上面的代码中用到了Long.bitCount()方法计算long型二进制表示中1的数量,堪称Java语言中最强的骚操作之一:

     public static int bitCount(long i) {
        // HD, Figure 5-14
        i = i - ((i >>> 1) & 0x5555555555555555L);
        i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
        i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
        i = i + (i >>> 8);
        i = i + (i >>> 16);
        i = i + (i >>> 32);
        return (int)i & 0x7f;
     }

总结

本文讲解了布隆过滤器的产生、设计思路和应用场景,通过简单推导明确了其假阳性问题。另外,又通过阅读Guava中BloomFilter的相关源码,了解了设计布隆过滤器的技术要点。之后还会另外写文章讲述我们在生产环境中的具体应用。

上一篇下一篇

猜你喜欢

热点阅读