底层原理(九)------内存管理
CADisplayLink、NSTimer使用注意

CADisplayLink:保证调用频率和屏幕的刷帧频率一致,60FPS
NSProxy对象不需要调用init,因为它本来就没有init方法,少了一步从父类搜索代码的流程,直接进入消息转发
如果进去NSObject的话,需要从父类搜索代码,然后动态方法解析
GCD定时器

GCD定时器代码封装
#import <Foundation/Foundation.h>
@interface MJTimer : NSObject
+ (NSString *)execTask:(void(^)(void))task
start:(NSTimeInterval)start
interval:(NSTimeInterval)interval
repeats:(BOOL)repeats
async:(BOOL)async;
+ (NSString *)execTask:(id)target
selector:(SEL)selector
start:(NSTimeInterval)start
interval:(NSTimeInterval)interval
repeats:(BOOL)repeats
async:(BOOL)async;
+ (void)cancelTask:(NSString *)name;
@end
#import "MJTimer.h"
@implementation MJTimer
static NSMutableDictionary *timers_;
dispatch_semaphore_t semaphore_;
+ (void)initialize
{
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
timers_ = [NSMutableDictionary dictionary];
semaphore_ = dispatch_semaphore_create(1);
});
}
+ (NSString *)execTask:(void (^)(void))task start:(NSTimeInterval)start interval:(NSTimeInterval)interval repeats:(BOOL)repeats async:(BOOL)async
{
if (!task || start < 0 || (interval <= 0 && repeats)) return nil;
// 队列
dispatch_queue_t queue = async ? dispatch_get_global_queue(0, 0) : dispatch_get_main_queue();
// 创建定时器
dispatch_source_t timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
// 设置时间
dispatch_source_set_timer(timer,
dispatch_time(DISPATCH_TIME_NOW, start * NSEC_PER_SEC),
interval * NSEC_PER_SEC, 0);
dispatch_semaphore_wait(semaphore_, DISPATCH_TIME_FOREVER);
// 定时器的唯一标识
NSString *name = [NSString stringWithFormat:@"%zd", timers_.count];
// 存放到字典中
timers_[name] = timer;
dispatch_semaphore_signal(semaphore_);
// 设置回调
dispatch_source_set_event_handler(timer, ^{
task();
if (!repeats) { // 不重复的任务
[self cancelTask:name];
}
});
// 启动定时器
dispatch_resume(timer);
return name;
}
+ (NSString *)execTask:(id)target selector:(SEL)selector start:(NSTimeInterval)start interval:(NSTimeInterval)interval repeats:(BOOL)repeats async:(BOOL)async
{
if (!target || !selector) return nil;
return [self execTask:^{
if ([target respondsToSelector:selector]) {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Warc-performSelector-leaks"
[target performSelector:selector];
#pragma clang diagnostic pop
}
} start:start interval:interval repeats:repeats async:async];
}
+ (void)cancelTask:(NSString *)name
{
if (name.length == 0) return;
dispatch_semaphore_wait(semaphore_, DISPATCH_TIME_FOREVER);
dispatch_source_t timer = timers_[name];
if (timer) {
dispatch_source_cancel(timer);
[timers_ removeObjectForKey:name];
}
dispatch_semaphore_signal(semaphore_);
}
@end
iOS程序的内存布局

Tagged Pointer

判断是否是Tagged Pointer

面试题
1、思考以下2段代码能发生什么事?有什么区别?

答案:
第一个会报坏内存释放错误,因为ARC本身就是MRC转换过来的,name其实内部会实现[_name release];释放的操作,同时有好几千挑数据同时访问一块内存地址,有可能释放多次,就会报错坏内存
改进:
1、nonatomic改成atomic
2、进行加锁 解锁操作在线程里面
第二个不会报错,abc是调用了Tagged Pointer方法,不会调用set方法,也不会触发release,直接是指针地址值赋值给对象
看地址的最后一位是否为0,0的话 为对象,1的话为Tagged Pointer
OC对象的内存管理

父类的delloc放到子类的后边
Copy和MutableCopy
// 拷贝的目的:产生一个副本对象,跟源对象互不影响
// 修改了源对象,不会影响副本对象
// 修改了副本对象,不会影响源对象
/*
iOS提供了2个拷贝方法
1.copy,不可变拷贝,产生不可变副本
2.mutableCopy,可变拷贝,产生可变副本
深拷贝和浅拷贝
1.深拷贝:内容拷贝,产生新的对象
2.浅拷贝:指针拷贝,没有产生新的对象
*/



引用计数的存储

Weak的实现原理
将弱引用存放到哈希表里面,对象销毁,他就取出我们当前对象的弱引用表,把当前对象的弱引用表里面的数据都清除掉
weak是有一个弱引用表维护,在调用dealloc的以后他会便利weak的弱引用表,完了进行释放
__strong:强引用
__weak:弱引用,指向的对象销毁时,对应的指针也会销毁
__unsafe_unretained:不安全的弱引用,指向的对象销毁时,对应的指针不会销毁,也就是野指针
- (void)viewDidLoad {
[super viewDidLoad];
// ARC是LLVM编译器和Runtime系统相互协作的一个结果
__strong MJPerson *person1;
__weak MJPerson *person2;
__unsafe_unretained MJPerson *person3;
NSLog(@"111");
{
MJPerson *person = [[MJPerson alloc] init];
person3 = person;
}
NSLog(@"222 - %@", person3);
}

ARC都帮我们做了什么?
ARC其实是LLVM+Runtime实现的,LLVM编译器自动帮我们处理了retain、release、autorelease等引用计数操作,在程序运行时,像弱引用的存在,则需要Runtime进行操作。
ARC其实就是LLVM编译器和Runtime相互协作的一个结果
自动释放池

/*
// @autoreleasepool内部结构
struct __AtAutoreleasePool {
__AtAutoreleasePool() { // 构造函数,在创建结构体的时候调用
atautoreleasepoolobj = objc_autoreleasePoolPush();
}
~__AtAutoreleasePool() { // 析构函数,在结构体销毁的时候调用
objc_autoreleasePoolPop(atautoreleasepoolobj);
}
void * atautoreleasepoolobj;
};
{
__AtAutoreleasePool __autoreleasepool;
MJPerson *person = ((MJPerson *(*)(id, SEL))(void *)objc_msgSend)((id)((MJPerson *(*)(id, SEL))(void *)objc_msgSend)((id)((MJPerson *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("MJPerson"), sel_registerName("alloc")), sel_registerName("init")), sel_registerName("autorelease"));
}
atautoreleasepoolobj = objc_autoreleasePoolPush();
MJPerson *person = [[[MJPerson alloc] init] autorelease];
objc_autoreleasePoolPop(atautoreleasepoolobj);
*/
AutoreleasePoolPage的结构
达到先进后出的效果,
双向链表:简单的来说就是存放2个指针,一个可以查找到下边的对象的指针,一个可以查到上面对象的指针


autorelease对象在什么时机会被调用release
autorelease实际上只是把对release的调用延迟了,对于每一个Autorelease,系统只是把该Object放入了当前的Autorelease pool中,当该pool被释放时,该pool中的所有Object会被调用Release。对于每一个Runloop, 系统会隐式创建一个Autorelease pool,这样所有的release pool会构成一个象CallStack一样的一个栈式结构,在每一个Runloop结束时,当前栈顶的Autorelease pool会被销毁,这样这个pool里的每个Object(就是autorelease的对象)会被release。那什么是一个Runloop呢? 一个UI事件,Timer call, delegate call, 都会是一个新的Runloop。那什么是一个Runloop呢? 一个UI事件,Timer call, delegate call, 都会是一个新的Runloop
RunLoop和Autorelease
