Kubernetes 的自动伸缩你用对了吗?

2021-06-09  本文已影响0人  云原生指北

本文翻译自 learnk8s 的 Architecting Kubernetes clusters — choosing the best autoscaling strategy,<u>有增删部分内容</u>。

TL;DR: 在默认设置下,扩展 Kubernetes 集群中的 pod 和节点可能需要几分钟时间。了解如何调整集群节点的大小、配置水平和集群自动缩放器以及过度配置集群以加快扩展速度。

自动扩展器

在 Kubernetes 中,常说的“自用扩展”有:

不同类型的自动缩放器,使用的场景不一样。

HPA

HPA 定期检查内存和 CPU 等指标,自动调整 Deployment 中的副本数,比如流量变化:

调整前 调整后

VPA

有些时候无法通过增加 Pod 数来扩容,比如数据库。这时候可以通过 VPA 增加 Pod 的大小,比如调整 Pod 的 CPU 和内存:

调整前 调整后

CA

当集群资源不足时,CA 会自动配置新的计算资源并添加到集群中:

调整前 调整后

自动缩放 Pod 出错时

比如一个应用需要 1.5 GB 内存和 0.25 个 vCPU。一个 8GB 和 2 个 vCPU 的节点,可以容纳 4 个这样的 Pod,完美!

做如下配置:

  1. HPA:每增加 10 个并发,增加一个副本。即 40 个并发的时候,自动扩展到 4 个副本。(这里使用自定义指标,比如来自 Ingress Controller 的 QPS)
  2. CA:在资源不足的时候,增加计算节点。

当并发达到 30 的时候,系统是下面这样。完美!HPA 工作正常,CA 没工作。

当增加到 40 个并发的时候,系统是下面的情况:

  1. HPA 增加了一个 Pod
  2. Pod 挂起
  3. CA 增加了一个节点
HPA 工作 CA 工作

为什么 Pod 没有部署成功?

节点上的操作系统进程和 kubelet 也会消耗一部分资源,8G 和 2 vCPU 并不是全都可以提供给 Pod 用的。并且还有一个驱逐阈值:在节点系统剩余资源达到阈值时,会驱逐 Pod,避免 OOM 的发生。

当然上面的这些都是可配置的。

那为什么在创建该 Pod 之前,CA 没有增加新的节点呢?

CA 如何工作?

CA 在触发自动缩放时,不会查看可用的内存或 CPU。

CA 是面向事件工作的,并每 10 秒检查一次是否存在不可调度(Pending)的 Pod。

当调度器无法找到可以容纳 Pod 的节点时,这个 Pod 是不可调度的。

此时,CA 开始创建新节点:CA 扫描集群并检查是否有不可调度的 Pod。

当集群有多种节点池,CA 会通过选择下面的一种策略:

确定类型后,CA 会调用相关 API 来创建资源。(云厂商会实现 API,比如 AWS 添加 EC2;Azure 添加 Virtual Machine;阿里云增加 ECS;GCP 增加 Compute Engine)

计算资源就绪后,就会进行节点的初始化

注意,这里需要一定的耗时,通常比较慢。

探索 Pod 自动缩放的前置时间

四个因素:

  1. HPA 的响应耗时
  2. CA 的响应耗时
  3. 节点的初始化耗时
  4. Pod 的创建时间

默认情况下,kubelet 每 10 秒抓取一次 Pod 的 CPU 和内存占用情况

每分钟,Metrics Server 会将聚合的指标开放给 Kubernetes API 的其他组件使用。

CA 每 10 秒排查不可调度的 Pod。

节点的配置时间,取决于云服务商。通常在 3~5 分钟。

容器运行时创建 Pod:启动容器的几毫秒和下载镜像的几秒钟。如果不做镜像缓存,几秒到 1 分钟不等,取决于层的大小和梳理。

对于小规模的集群,最坏的情况是 6 分 30 秒。对于 100 个以上节点规模的集群,可能高达 7 分钟。

HPA delay:          1m30s +
CA delay:           0m30s +
Cloud provider:     4m    +
Container runtime:  0m30s +
=========================
Total               6m30s

突发情况,比如流量激增,你是否愿意等这 7 分钟?

这 7 分钟,如何优化压缩?

即使调小了上述设置,依然会受云服务商的时间限制。

那么,如何解决?

两种尝试:

  1. 尽量避免被动创建新节点
  2. 主动创建新节点

为 Kubernetes 选择最佳规格的节点

这会对扩展策略产生巨大影响。

这样的场景

应用程序需要 1GB 内存和 0.1 vCPU;有一个 4GB 内存和 1 个 vCPU 的节点。

排除操作系统、kubelet 和阈值保留空间后,有 2.5GB 内存和 0.7 个 vCPU 可用。

最多只能容纳 2 个 Pod,扩展副本时最长耗时 7 分钟(HPA、CA、云服务商的资源配置耗时)

假如节点的规格是 64GB 内存和 16 个 vCPU,可用的资源为 58.32GB 和 15.8 个 vCPU。

这个节点可以托管 58 个 Pod。只有扩容第 59 个副本时,才需要创建新的节点。

CleanShot 2021-06-08 at 23.16.56@2x

这样触发 CA 的机会更少。

选择大规格的节点,还有另外一个好处:资源的利用率会更高。

节点上可以容纳的 Pod 数量,决定了效率的峰值。

物极必反!更大的实例,并不是一个好的选择:

  1. 爆炸半径(Blast radius):节点故障时,少节点的集群和多节点的集群,前者影响更大。
  2. 自动缩放的成本效益低:增加一个大容量的节点,其利用率会比较低(调度过去的 Pod 数少)

即使选择了正确规格的节点,配置新的计算单元时,延迟仍然存在。怎么解决?

能否提前创建节点?

为集群过度配置节点

即为集群增加备用节点,可以:

  1. 创建一个节点,并留空 (比如 SchedulingDisabled)
  2. 一旦空节点中有了一个 Pod,马上创建新的空节点
CleanShot 2021-06-08 at 23.26.26@2x

这种会产生额外的成本,但是效率会提升。

CA 并不支持此功能 -- 总是保留一个空节点。

但是,可以伪造。创建一个只占用资源,不使用资源的 Pod 占用整个 Node 节点。

一旦有了真正的 Pod,驱逐占位的 Pod。


待后台完成新的节点配置后,将“占位” Pod 再次占用整个节点。

这个“占位”的 Pod 可以通过永久休眠来实现空间的保留。

apiVersion: apps/v1
kind: Deployment
metadata:
  name: overprovisioning
spec:
  replicas: 1
  selector:
    matchLabels:
      run: overprovisioning
  template:
    metadata:
      labels:
        run: overprovisioning
    spec:
      containers:
        - name: pause
          image: k8s.gcr.io/pause
          resources:
            requests:
              cpu: '1739m'
              memory: '5.9G'

使用优先级和抢占,来实现创建真正的 Pod 后驱逐“占位”的 Pod。

使用 PodPriorityClass 在配置 Pod 优先级:

apiVersion: scheduling.k8s.io/v1beta1
kind: PriorityClass
metadata:
  name: overprovisioning
value: -1 #默认的是 0,这个表示比默认的低
globalDefault: false
description: 'Priority class used by overprovisioning.'

为“占位” Pod 配置优先级:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: overprovisioning
spec:
  replicas: 1
  selector:
    matchLabels:
      run: overprovisioning
  template:
    metadata:
      labels:
        run: overprovisioning
    spec:
      priorityClassName: overprovisioning #HERE
      containers:
        - name: reserve-resources
          image: k8s.gcr.io/pause
          resources:
            requests:
              cpu: '1739m'
              memory: '5.9G'

已经做完过度配置,应用程序是否需要优化?

为 Pod 选择正确的内存和 CPU 请求

Kubernetes 是根据 Pod 的内存和 CPU 请求,为其分配节点。

如果 Pod 的资源请求配置不正确,可能会过晚(或过早)触发自动缩放器。

这样一个场景:

有三种请求的配置选择:

  1. 远低于平均使用量
  2. 匹配平均使用量
  3. 尽量接近限制
2 2 3

第一种的问题在于超卖严重,过度使用节点。kubelet 负载高,稳定性差。

1

第三种,会造成资源的利用率低,浪费资源。这种通常被称为 QoS:Quality of Service class 中的 Guaranteed 级别,Pod 不会被终止和驱逐。

3

如何在稳定性和资源使用率间做权衡?

这就是 QoS:Quality of Service class 中的 Burstable 级别,即 Pod 偶尔会使用更多的内存和 CPU。

  1. 如果节点中有可用资源,应用程序会在返回基线(baseline)前使用这些资源。
  2. 如果资源不足,Pod 将竞争资源(CPU),kubelet 也有可能尝试驱逐 Pod(内存)。

GuaranteedBurstable 之前如何做选择?取决于:

  1. 想尽量减少 Pod 的重新调度和驱逐,应该是用 Guaranteed
  2. 如果想充分利用资源时,使用 Burstable。比如弹性较大的服务,Web 或者 REST 服务。

如何做出正确的配置?

应该分析应用程序,并测算空闲、负载和峰值时的内存和 CPU 消耗。

甚至可以通过部署 VPA 来自动调整。

如何进行集群缩容?

每 10 秒,当请求(request)利用率低于 50%时,CA 才会决定删除节点。

CA 会汇总同一个节点上的所有 Pod 的 CPU 和内存请求。小于节点容量的一半,就会考虑对当前节点进行缩减。

需要注意的是,CA 不考虑实际的 CPU 和内存使用或者限制(limit),只看请求(request)。

移除节点之前,CA 会:

  1. 检查 Pod 确保可以调度到其他节点上。
  2. 检查节点,避免节点被过早的销毁,比如两个节点的请求都低于 50%。

检查都通过之后,才会删除节点。

为什么不根据内存或 CPU 进行自动缩放?

基于内存和 CPU 的自动缩放器,不关心 pod。

比如配置缩放器在节点的 CPU 达到总量的 80%,就自动增加节点。

当你创建 3 个副本的 Deployment,3 个节点的 CPU 达到了 85%。这时会创建一个节点,但你并不需要第 4 个副本,新的节点就空闲了。

不建议使用这种类型的自动缩放器。

总结

定义和实施成功的扩展策略,需要掌握以下几点:

配合适当的监控工具,可以反复测试扩展策略并调整集群的缩放速度和成本。

上一篇下一篇

猜你喜欢

热点阅读