206. 区间求和 I

2018-01-29  本文已影响28人  6默默Welsh

描述

给定一个整数数组(下标由 0 到 n-1,其中 n 表示数组的规模),以及一个查询列表。每一个查询列表有两个整数 [start, end] 。 对于每个查询,计算出数组中从下标 start 到 end 之间的数的总和,并返回在结果列表中。

注意事项

在做此题前,建议先完成以下三题:线段树的构造线段树的查询,以及线段树的修改

样例

对于数组 [1,2,7,8,5],查询[(1,2),(0,4),(2,4)], 返回 [9,23,20]

挑战

O(logN) time for each query

代码

  1. 无需拆分区间
/**
 * Definition of Interval:
 * public classs Interval {
 *     int start, end;
 *     Interval(int start, int end) {
 *         this.start = start;
 *         this.end = end;
 *     }
 */


public class Solution {
    /*
     * @param A: An integer list
     * @param queries: An query list
     * @return: The result list
     */
    class SegmentTreeNode {
        public int start;
        public int end;
        public long sum;
        SegmentTreeNode left;
        SegmentTreeNode right;
        public SegmentTreeNode(int start, int end, long sum) {
            this.start = start;
            this.end = end;
            this.sum = sum;
            this.left = null;
            this.right = null;
        }
    }

    public SegmentTreeNode build(int start, int end, int[] A) {
        if (start > end) {
            return null;
        }
    
        if (start == end) {
            return new SegmentTreeNode(start, end, A[start]);
        }
    
        SegmentTreeNode root = new SegmentTreeNode(start, end, 0);
        int mid = start + (end - start) / 2;
        root.left = build(start, mid, A);
        root.right = build(mid + 1, end, A);
        if (root.left != null) {
            root.sum += root.left.sum;
        }
        if (root.right != null) {
            root.sum += root.right.sum;
        }
        return root;
    }

    public long query(SegmentTreeNode root, int start, int end) {
        if (start <= root.start && end >= root.end) {
            return root.sum;
        }
    
        int mid = root.start + (root.end - root.start) / 2;
        long ans = 0;
        if (start <= mid) {
            ans += query(root.left, start, end);
        } 
        if (end > mid) {
            ans += query(root.right, start, end);
        }
    
        return ans;
    }
 
    SegmentTreeNode root;
    public List<Long> intervalSum(int[] A, List<Interval> queries) {
        root = build(0, A.length - 1, A);
        List<Long> list = new ArrayList<>();
        
        for (Interval num : queries) {
            long res = query(root, num.start, num.end);
            list.add(res);
        }
        
        return list;
    }
}

本题有个 bug 需要注意,如果 query 要求返回 long,那么在 SegmentTreeNode 的定义中要把 sum 声明为 long、

  1. 手动拆分区间
public class Solution {
    /**
     *@param A, queries: Given an integer array and an query list
     *@return: The result list
     */
     class SegmentTreeNode {
        public int start, end;
        public Long sum;
        public SegmentTreeNode left, right;
        public SegmentTreeNode(int start, int end, Long sum) {
              this.start = start;
              this.end = end;
              this.sum = sum;
              this.left = this.right = null;
        }
    }
    public SegmentTreeNode build(int start, int end, int[] A) {
        // write your code here
        if(start > end) {  // check core case
            return null;
        }
        
        SegmentTreeNode root = new SegmentTreeNode(start, end, 0L);
        
        if(start != end) {
            int mid = (start + end) / 2;
            root.left = build(start, mid, A);
            root.right = build(mid+1, end, A);
            
            root.sum = root.left.sum + root.right.sum;
        } else {
            root.sum =  Long.valueOf(A[start]);
            
        }
        return root;
    }
    public Long query(SegmentTreeNode root, int start, int end) {
        // write your code here
        if(start == root.start && root.end == end) { // 相等 
            return root.sum;
        }
        
        
        int mid = (root.start + root.end)/2;
        Long leftsum = 0L, rightsum = 0L;
        // 左子区
        if(start <= mid) {
            if( mid < end) { // 分裂 
                leftsum =  query(root.left, start, mid);
            } else { // 包含 
                leftsum = query(root.left, start, end);
            }
        }
        // 右子区
        if(mid < end) { // 分裂 3
            if(start <= mid) {
                rightsum = query(root.right, mid+1, end);
            } else { //  包含 
                rightsum = query(root.right, start, end);
            } 
        }  
        // else 就是不相交
        return leftsum + rightsum;
    }
    public ArrayList<Long> intervalSum(int[] A, 
                                       ArrayList<Interval> queries) {
        // write your code here
        SegmentTreeNode root = build(0, A.length - 1, A);
        ArrayList ans = new ArrayList<Long>();
        for(Interval in : queries) {
            ans.add(query(root, in.start, in.end));
        }
        return ans;
    }
}
上一篇下一篇

猜你喜欢

热点阅读