虚拟机类加载机制

2019-02-25  本文已影响0人  塞外的风

在Class文件描述的各种信息,最终都需要加载到虚拟机中才能运行和使用。了解虚拟机类加载机制,就需要弄懂下面两个问题:

  1. 虚拟机如何加载Class文件?
  2. Class文件中的信息进入到虚拟机后会发生什么变化?

虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验,转换解析并初始化,最终形成可以被虚拟机直接使用的Java类型。

与那些在编译时需要进行连接工作的语言不同,在Java语言里,类型的加载、连接和初始化过程都是在程序运行期间完成的。

一. 类加载的时机

类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载、验证、准备、解析、初始化、使用、卸载。其中,验证、准备、解析这3个部分统称为连接。


类加载

Java虚拟机规范并没有强制约束什么情况下需要进行类加载,但虚拟机规范严格规定了有且只有5种情况必须立即对类进行“初始化”,加载、验证、准备则需要在此之前就开始。

5种必须对类进行初始化的情形:

  1. 遇到 new、getstatic、putstatic或invokestatic这4条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。
  2. 使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
  3. 当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要触发其父类的初始化。
  4. 当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。
  5. 当使用JDK1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。

二. 类加载的过程

1. 加载

在加载阶段,虚拟机需要完成以下3件事情:
(1) 通过一个类的全限定名来获取定义此类的二进制字节流。
(2) 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
(3) 在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

虚拟机规范的这3点要求都不算具体,其实现与具体应用的灵活度都是相当大的。它没有指明二进制字节流要从一个Class文件中获取,准备地说根本没有指明要从哪里获取、怎样获取。很多Java技术都建立在这种灵活性的基础之上,例如:

对于数组类而言,数组类本身不通过类加载器创建,它是由Java虚拟机直接创建的。但数组类的元素类型最终是要靠类加载器去创建。一个数组类的创建过程遵循以下规则:

加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,方法区中的数据存储格式由虚拟机实现自行定义,虚拟机规范未规定此区域的具体数据结构。然后在内存中实例化一个java.lang.Class类的对象(并没有明确规定是在Java堆中,对于HotSpot虚拟机而言,Class对象比较特殊,它虽然是对象,但是存放在方法区里面),这个对象将作为程序访问方法区中的这些类型数据的外部接口。

2. 验证

验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
验证阶段大致会完成下面4个阶段的检验动作:
文件格式验证、元数据验证、字节码验证、符号引用验证。

(1)文件格式验证
第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。这一阶段可能包括下面这些验证点:

实际上,第一阶段的验证点远不止这些。该验证阶段的主要目的是保证输入的字节流能正确地解析并存储于方法区之内,格式上符合描述一个Java类型信息的要求。这阶段的验证是基于二进制字节流进行的,只有通过了这个阶段的验证后,字节流才会进入内存的方法区中进行存储,后面的3个阶段全部是基于方法区的存储结构进行的,不再直接操作字节流。

(2)元数据验证
第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求,这个阶段可能包括的验证点如下:

第二阶段的主要目的是对类的元数据信息进行校验,保证不存在不符合Java语言规范的元数据信息。

(3)字节码验证
第三阶段是整个验证过程最复杂的一个阶段,主要目的是通过数据流和控制流分析,确定程序的语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型做完校验后,这个阶段将对类的方法体进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的事件,如:

(4)符号引用验证
最后一个阶段的校验发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段--解析阶段中发生。符号引用验证可以看做是对类自身以外(常量池中的各种符号引用)的信息进行匹配性校验,通常需要校验下列内容:

符号验证的目的是确保解析动作能正常执行,如果无法通过符号引用验证,那么将会抛出一个java.lang.IncompatibleClassChangeError异常的子类,如java.lang.IllegalAccessError、java.lang.NoSuchFieldError、java.lang.NoSuchMethodError等。

3. 准备

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。这时候进行内存分配的仅包括类变量(被static修饰的变量)而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次,这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:
public static int value = 123;
那变量value在准备阶段过后的初始值是0而不是123,因为这时候尚未开始执行任何Java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器<clinit>()方法之中,所以把value赋值为123的动作将在初始化阶段才会执行。

4. 解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。

解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行。
(1)类或接口的解析
假设当前代码所处的类为D,如果要把一个从未解析过的符号引用N解析为一个类或接口C的直接引用,那虚拟机完成整个解析的过程需要以下3个步骤:

(2)字段解析
要解析一个未被解析过的字段符号引用,首先将会对字段表内的class_index项中索引的CONSTANT_Class_info符号引用进行解析,也就是字段所属的类或接口的符号引用。如果在解析这个类或接口符号引用的过程中出现了任何异常,都会导致字段符号引用解析的失败。如果解析成功完成,那将这个字段所属的类或接口用C表示,虚拟机规范要求按照如下步骤对C进行后续字段的搜索。

如果查找过程成功返回了引用,将会对这个字段进行权限验证,如果发现不具备对字段的访问权限,将抛出java.lang.IllegalAccessError异常。

(3)类方法解析
类方法解析的第一个步骤与字段解析一样,也需要先解析出类方法表的class_index项中索引的方法所属的类或接口的符号引用,如果解析成功,用C表示这个类,接下来虚拟机将会按照如下步骤进行后续的类方法搜索。

最后,如果查找过程成功返回了直接引用,将会对这个方法进行权限验证,如果发现不具备对此方法的访问权限,将抛出java.lang.IllegalAccessError异常。

(4)接口方法解析
接口方法也需要先解析出接口方法表的class_index项中索引方法所属的类或接口的符号引用,如果解析成功,用C表示这个接口,接下来虚拟机将会按照如下步骤进行后续的接口方法搜索。

由于接口中的所有方法默认都是public的,所以不存在访问权限的问题,因此接口方法的符号解析不会抛出java.lang.IllegalAccessError异常。

5. 初始化

类加载阶段是类加载过程的最后一步,前面的类加载过程中,除了在加载阶段用户应用程序可以通过自定义类加载器参与之外,其余动作完全是由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java程序代码(或者说是字节码)。
在准备阶段,变量已经赋值一次系统要求的初始值,而在初始化阶段,则根据程序员通过程序制定的主观计划去初始化类变量和其他资源,也可以说,初始化阶段是执行类构造器<clinit>()方法的过程。

三. 类加载器

虚拟机设计团队把类加载阶段中的“通过一个类的全限定名来获取描述此类的二进制字节流”这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需要的类。实现这个动作的代码模块称为“类加载器”。

1. 类与类加载器

类加载器虽然只用于实现类的加载动作,但它在Java程序中起到的作用却远远不限于类加载阶段。对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。

2. 双亲委派模型

从Java虚拟机的角度来讲,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader),这个类加载器使用C++语言实现,是虚拟机自身的一部分;另一种就是所有其他的类加载器,这些类加载器都由Java语言实现,独立于虚拟机外部,并且全都继承自抽象类java.lang.ClassLoader。

从Java开发人员的角度来看,类加载器还可以划分的更细致一些,绝大部分Java程序都会使用到以下3种系统提供的类加载器:

  1. 启动类加载器
    这个类加载器负责将存放在<JAVA_HOME>\lib目录中的,或者被-Xbootclasspath参数所指定的路径中的,并且是虚拟机识别的类库加载到虚拟机内存中。
    启动类加载器无法被Java程序直接饮用。

  2. 扩展类加载器
    这个加载器由sun.misc.Launcher$ExtClassLoader实现,它负责加载<JAVA_HOME>\lib\ext目录中的,或者被java.ext.dirs系统变量所指定的路径中的所有类库,开发者可以直接使用扩展类加载器。

  3. 应用程序类加载器
    这个类加载器由sun.misc.Launcher$AppClassLoader实现。由于这个类加载器是ClassLoader中的getSystemClassLoader()方法的返回值,所以一般也称它为系统类加载器。它负责加载用户类路径上所指定的类库,开发者可以直接使用这个类加载器,如果应用程序中没有自定义过自己的加载器,一般情况下这个就是程序中默认的类加载器。

双亲委派模型

上图所示的类加载器之间的这种层次关系,称为类加载器的双亲委派模型。双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。这里的类加载器之间的父子关系一般不会以继承关系来实现,而是都使用组合关系来复用父类加载器的代码。

双亲委派模型的工作过程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到顶层的启动类加载器中,只有当父类加载器反馈自己无法完成这个加载请求时,子类加载器才会尝试自己去加载。

protected synchronized Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException {
    //首先检查请求的类是否已经被加载过了
    Class c = findLoadedClass(name);
    if (c == null) {
        try {
            if (parent != null) {
                c = parent.loadClass(name, false);
            } else {
                c = findBootstrapClassOrNull(name);
            }
        } catch (ClassNotFoundException e) {
            //父类加载器抛出ClassNotFoundException,说明父类加载器无法完成加载请求
        }

        if (c == null) {
            //父类加载器无法完成加载时,调用本身的findClass方法来进行类加载
            c = findClass(name);
        }
    }

    if (resolve) {
        resolveClass(c);
    }
    return c;
}
上一篇下一篇

猜你喜欢

热点阅读