OkHttp源码分析:五大拦截器详解
OkHttp源码分析:五大拦截器详解
一、RetryAndFollowUpInterceptor(重试与重定向拦截器)
主要完成两件事:重试与重定向
@Override public Response intercept(Chain chain) throws IOException {
Request request = chain.request();
//创建StreamAllocation对象(包含http请求组件)
StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
createAddress(request.url()), call, eventListener, callStackTrace);
Response priorResponse = null;
while (true) {
if (canceled) {
streamAllocation.release();
throw new IOException("Canceled");
}
Response response;
boolean releaseConnection = true;
try {
response = realChain.proceed(request, streamAllocation, null, null);
releaseConnection = false;
} catch (RouteException e) {
// ① 路由异常,连接未成功,请求还没发出去
if (!recover(e.getLastConnectException(), streamAllocation, false, request)) {
throw e.getLastConnectException();
}
releaseConnection = false;
continue;
} catch (IOException e) {
//②请求发出去了,但是和服务器通信失败了(socket流正在读写数据的时候断开连接)
boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
if (!recover(e, streamAllocation, requestSendStarted, request)) throw e;
releaseConnection = false;
continue;
} finally {
// ③不是前两种失败,直接关闭和清理所有资源
if (releaseConnection) {
streamAllocation.streamFailed(null);
streamAllocation.release();
}
}
//...
//重定向
Request followUp = followUpRequest(response, streamAllocation.route());
if (followUp == null) {
if (!forWebSocket) {
streamAllocation.release();
}
//不需要重定向直接返回response终止循环
return response;
}
//...
}
}
重试与重定向拦截器主要处理Response,可以看到RouteException和IOException都是调用了recover,返回true表示允许重试。允许重试—>continue—> while (true)—>realChain.proceed,这就完成了重试的过程。
private boolean recover(IOException e, StreamAllocation streamAllocation,
boolean requestSendStarted, Request userRequest) {
streamAllocation.streamFailed(e);
// ①OkHttpClient是否设置了不允许重试(默认允许),则一旦请求失败就不再重试——>全局配置
if (!client.retryOnConnectionFailure()) return false;
// ②针对某个请求配置是否需要重试 用户自己实现UnrepeatableRequestBody请求体——>单个请求配置
if (requestSendStarted && userRequest.body() instanceof UnrepeatableRequestBody) return false;
// ③是否属于重试的异常(协议异常、超时异常、证书异常、SSL握手未授权异常)
if (!isRecoverable(e, requestSendStarted)) return false;
// ④是否存在更多的路由
if (!streamAllocation.hasMoreRoutes()) return false;
return true;
}
重试.png
接着看重定向
Request followUp = followUpRequest(response, streamAllocation.route());
private Request followUpRequest(Response userResponse, Route route) throws IOException {
int responseCode = userResponse.code();
switch (responseCode) {
//407 客户端使用了HTTP代理服务器,在请求头中添加"Proxy-Authorization"让代理服务器授权
case HTTP_PROXY_AUTH:
return client.proxyAuthenticator().authenticate(route, userResponse);
//401 服务器接口需要验证使用者身份,在请求头中添加"Authorization"
case HTTP_UNAUTHORIZED:
return client.authenticator().authenticate(route, userResponse);
//308 永久重定向
case HTTP_PERM_REDIRECT:
//307临时重定向
case HTTP_TEMP_REDIRECT:
//如果请求方式不是GET或HEAD,框架不会自动重定向请求
if (!method.equals("GET") && !method.equals("HEAD")) {
return null;
}
// 300 301 302 303 各种重定向
case HTTP_MULT_CHOICE:
case HTTP_MOVED_PERM:
case HTTP_MOVED_TEMP:
case HTTP_SEE_OTHER:
// 客户端不允许重定向,返回null
if (!client.followRedirects()) return null;
//①从响应头取出location
String location = userResponse.header("Location");
if (location == null) return null;
//②根据location配置新的请求url
HttpUrl url = userResponse.request().url().resolve(location);
// 取不出HttpUrl,返回null,不进行重定向
if (url == null) return null;
//如果重定向在http到https之间切换,检查用户是否允许(默认允许)
boolean sameScheme = url.scheme().equals(userResponse.request().url().scheme());
if (!sameScheme && !client.followSslRedirects()) return null;
Request.Builder requestBuilder = userResponse.request().newBuilder();
//请求不是get与head
if (HttpMethod.permitsRequestBody(method)) {
final boolean maintainBody = HttpMethod.redirectsWithBody(method);
//除了 PROPFIND 请求之外都改成GET请求
if (HttpMethod.redirectsToGet(method)) {
requestBuilder.method("GET", null);
} else {
RequestBody requestBody = maintainBody ? userResponse.request().body() : null;
requestBuilder.method(method, requestBody);
}
// 不是 PROPFIND 的请求,把请求头中关于请求体的数据删掉
if (!maintainBody) {
requestBuilder.removeHeader("Transfer-Encoding");
requestBuilder.removeHeader("Content-Length");
requestBuilder.removeHeader("Content-Type");
}
}
// 在跨主机重定向时,删除身份验证请求头
if (!sameConnection(userResponse, url)) {
requestBuilder.removeHeader("Authorization");
}
//③构建Request
return requestBuilder.url(url).build();
//408 客户端请求超时
case HTTP_CLIENT_TIMEOUT:
// 判断用户是否允许重试
if (!client.retryOnConnectionFailure()) {
return null;
}
if (userResponse.request().body() instanceof UnrepeatableRequestBody) {
return null;
}
//本次重试结果还是408,就放弃,不再重复请求。
if (userResponse.priorResponse() != null
&& userResponse.priorResponse().code() == HTTP_CLIENT_TIMEOUT) {
// We attempted to retry and got another timeout. Give up.
return null;
}
//如果服务器告诉我们了 Retry-After 多久后重试,那框架不管了。
if (retryAfter(userResponse, 0) > 0) {
return null;
}
return userResponse.request();
// 503 服务不可用
case HTTP_UNAVAILABLE:
//再次请求还是503,就放弃,不再重复请求。
if (userResponse.priorResponse() != null
&& userResponse.priorResponse().code() == HTTP_UNAVAILABLE) {
// We attempted to retry and got another timeout. Give up.
return null;
}
//服务器告诉我们 Retry-After:0(意思就是立即重试) 才重请求
if (retryAfter(userResponse, Integer.MAX_VALUE) == 0) {
// specifically received an instruction to retry without delay
return userResponse.request();
}
return null;
default:
return null;
}
}
重定向总结
响应码 | 说明 | 重定向条件 |
---|---|---|
407 | 代理需要授权:如付费代理,需要验证身份 | 通过proxyAuthenticator获得到了Request(添加"Proxy-Authorization"请求头) |
401 | 服务器需要授权:如某些接口需要登录后才能使用(不安全) | 通过authenticator获得到了Request(添加"Authorization"请求头) |
300、301、302、303、307、308 | 重定向响应 | 307和308必须为GET/HEAD请求再继续判断①用户允许自动重定向(默认允许) ②能够获取到Location响应头,并且值为有效的url ③允许http到https切换(默认允许) |
408 | 客户端请求超时 | ①用户允许自动重定向(默认允许) ②本次重试结果不是408 ③服务器未响应Retry-After(稍后重试),或响应Retry-After为0 |
503 | 服务不可用 | ①本次重试结果不是503②服务器响应Retry-After为0,立即重试 |
另附HTTP响应状态码分类:
分类 | 描述 |
---|---|
1xx | 信息,服务器收到请求,需要请求者继续执行操作 |
2xx | 成功,操作被成功接收并处理 |
3xx | 重定向,需要进一步的操作以完成请求 |
4xx | 客户端错误,请求包含语法错误或无法完成请求 |
5xx | 服务端错误,服务器在处理请求的过程中发生了错误 |
小结:RetryAndFollowUpInterceptor是整个责任链中的第一个,首次接触到Request和最后接收Response的角色,它的主要功能是判断是否需要重试与重定向。
重试的前提是出现了RouteException或IOException,会通过recover方法进行判断是否进行重试。
重定向是发生在重试判定后,不满足重试的条件,会进一步调用followUpRequest根据Response的响应码进行重定向操作。
二、BridgeInterceptor(桥接拦截器)
@Override public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
RequestBody body = userRequest.body();
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
}
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
}
}
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
}
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
//读取对应的cookie数据设置进请求头
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
}
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
}
Response networkResponse = chain.proceed(requestBuilder.build());
//保存cookie,默认cookieJar不提供的实现(我们可以通过okHttpClient.cookieJarokHttpClient.cookieJar(cookieJar)去设置)
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
//如果使用gzip返回的数据,则使用 GzipSource 包装便于解析。
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
}
return responseBuilder.build();
}
补全请求头:
请求头 | 说明 |
---|---|
Content-Type | 请求体类型(如 application/x-www-form-urlencoded) |
Content-Length/Transfer-Encoding | 请求体解析方式 |
Host | 请求的主机站点 |
Connection:Keep-Alive | 默认保持长连接 |
Accept-Encoding:gzip | 接受响应体使用gzip压缩 |
Cookie | Cookie身份识别 |
User-Agent | 用户信息,如操作系统、浏览器等 |
小结:BridgeInterceptor是连接应用程序和服务器的桥梁,它为我们补全请求头,将请求转化为符合网络规范的Request。得到响应后:1.保存Cookie,在下次请求会读取对应的cookie数据设置进请求头,默认cookieJar不提供的实现 2.如果使用gzip返回的数据,则使用 GzipSource 包装便于解析。
三、CacheInterceptor(缓存拦截器)
@Override public Response intercept(Chain chain) throws IOException {
//cache不为空从cache中取(GET请求才有缓存)
Response cacheCandidate = cache != null
? cache.get(chain.request())
: null;
long now = System.currentTimeMillis();
//缓存策略
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse;
if (cache != null) {
cache.trackResponse(strategy);
}
if (cacheCandidate != null && cacheResponse == null) {
closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
}
//没有网络也没有缓存 ——> 请求失败直接返回504
if (networkRequest == null && cacheResponse == null) {
return new Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(504)
.message("Unsatisfiable Request (only-if-cached)")
.body(Util.EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
}
// 没有请求,有缓存 ——> 使用缓存
if (networkRequest == null) {
return cacheResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build();
}
//有网络,无缓存 ——> 去发起请求
Response networkResponse = null;
try {
networkResponse = chain.proceed(networkRequest);
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
closeQuietly(cacheCandidate.body());
}
}
// If we have a cache response too, then we're doing a conditional get.
if (cacheResponse != null) {
//有网络,有缓存 ——> 服务器返回304(表示无修改),则更新缓存响应并返回。
if (networkResponse.code() == HTTP_NOT_MODIFIED) {
Response response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers(), networkResponse.headers()))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis())
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
networkResponse.body().close();
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache.trackConditionalCacheHit();
cache.update(cacheResponse, response);
return response;
} else {
closeQuietly(cacheResponse.body());
}
}
Response response = networkResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
if (cache != null) {
if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
//cache不为空,有请求头和缓存策略时,通过cache.put进行缓存
// Offer this request to the cache.
CacheRequest cacheRequest = cache.put(response);
return cacheWritingResponse(cacheRequest, response);
}
if (HttpMethod.invalidatesCache(networkRequest.method())) {
try {
cache.remove(networkRequest);
} catch (IOException ignored) {
// The cache cannot be written.
}
}
}
return response;
}
缓存拦截器顾名思义处理缓存的,但是要建立在get请求的基础上,我们可以去通过okHttpClient.cache(cache)去设置。缓存拦截器的处理流程:
1.从缓存中取出对应请求的响应缓存
2.通过CacheStrategy判断使用缓存或发起网络请求,此对象中的networkRequest代表需要发起网络请求,cacheResponse表示直接使用缓存。
networkRequest | cacheResponse | 说明 |
---|---|---|
null | null | 直接返回504(网关超时) |
null | not null | 直接使用缓存 |
not null | null | 发起请求 |
not null | not null | 发起请求,若得到响应为304(表无修改),则更新缓存响应并返回 |
即:networkRequest存在则优先发起网络请求,否则使用cacheResponse缓存,若都不存在则请求失败。
- cache不为空,有请求头和缓存策略时,通过cache.put进行缓存
如果最终判定不能使用缓存,需要发起网络请求,则来到下一个拦截器ConnectInterceptor
四、ConnectInterceptor(连接拦截器)
Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
//从拦截器链获取StreamAllocation对象,这里的StreamAllocation对象是在第一个拦截器中初始化完成的(设置了连接池、url路径等),真正使用的地方在这里。
StreamAllocation streamAllocation = realChain.streamAllocation();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
//创建HttpCodec对象 HttpCodec:用来编码HTTP request和解码HTTP response
HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
//获取RealConnection
RealConnection connection = streamAllocation.connection();
//执行下一个拦截器,返回response
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
StreamAllocation对象是在第一个拦截器RetryAndFollowUpInterceptor中初始化完成的(设置了连接池、url路径等),当一个请求发出,需要建立连接,建立连接之后需要使用流来读取数据,这个StreamAllocation就是协调请求、连接与数据流三者之前的关系,它负责为一次请求寻找连接,然后获得流来实现网络通信。
public final class StreamAllocation {
private final ConnectionPool connectionPool;
private RealConnection connection;
//...
public HttpCodec newStream(OkHttpClient client, boolean doExtensiveHealthChecks) {
int connectTimeout = client.connectTimeoutMillis();
int readTimeout = client.readTimeoutMillis();
int writeTimeout = client.writeTimeoutMillis();
boolean connectionRetryEnabled = client.retryOnConnectionFailure();
try {
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);
HttpCodec resultCodec = resultConnection.newCodec(client, this);
synchronized (connectionPool) {
codec = resultCodec;
return resultCodec;
}
} catch (IOException e) {
throw new RouteException(e);
}
}
}
StreamAllocation对象有两个关键角色:
- RealConnection:真正建立Socket连接的对象
- ConnectionPool:连接池,用来管理和复用Socket连接
真正的连接是在RealConnection中实现的,连接由ConnectionPool管理。
//ConnectionPool.java
public ConnectionPool() {
//连接池最多保存5个连接的keep-alive,每个时长5分钟
this(5, 5, TimeUnit.MINUTES);
}
public ConnectionPool(int maxIdleConnections, long keepAliveDuration, TimeUnit timeUnit) {
this.maxIdleConnections = maxIdleConnections;
this.keepAliveDurationNs = timeUnit.toNanos(keepAliveDuration);
}
void put(RealConnection connection) {
assert (Thread.holdsLock(this));
if (!cleanupRunning) {
cleanupRunning = true;
//清理无效的连接
executor.execute(cleanupRunnable);
}
connections.add(connection);
}
private final Runnable cleanupRunnable = new Runnable() {
@Override public void run() {
while (true) {
long waitNanos = cleanup(System.nanoTime());
if (waitNanos == -1) return;
if (waitNanos > 0) {
long waitMillis = waitNanos / 1000000L;
waitNanos -= (waitMillis * 1000000L);
synchronized (ConnectionPool.this) {
try {
ConnectionPool.this.wait(waitMillis, (int) waitNanos);
} catch (InterruptedException ignored) {
}
}
}
}
}
};
//获取可复用的连接
RealConnection get(Address address, StreamAllocation streamAllocation, Route route) {
assert (Thread.holdsLock(this));
for (RealConnection connection : connections) {
//要拿到的连接与连接池中的连接,连接的配置(DNS、代理、SSL证书、服务器域名、端口等)一致,就可以复用
if (connection.isEligible(address, route)) {
streamAllocation.acquire(connection, true);
return connection;
}
}
return null;
}
long cleanup(long now) {
int inUseConnectionCount = 0;
int idleConnectionCount = 0;
RealConnection longestIdleConnection = null;
long longestIdleDurationNs = Long.MIN_VALUE;
// Find either a connection to evict, or the time that the next eviction is due.
synchronized (this) {
for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {
RealConnection connection = i.next();
//检查连接是否正在使用
// If the connection is in use, keep searching.
if (pruneAndGetAllocationCount(connection, now) > 0) {
inUseConnectionCount++;
continue;
}
//否则记录闲置连接数
idleConnectionCount++;
// If the connection is ready to be evicted, we're done.
//计算这个连接已经闲置多久
long idleDurationNs = now - connection.idleAtNanos;
//找到闲置最久的连接
if (idleDurationNs > longestIdleDurationNs) {
longestIdleDurationNs = idleDurationNs;
longestIdleConnection = connection;
}
}
//keep-alive时间>=5分钟||连接池内闲置连接>5,立即移除
if (longestIdleDurationNs >= this.keepAliveDurationNs
|| idleConnectionCount > this.maxIdleConnections) {
connections.remove(longestIdleConnection);
} else if (idleConnectionCount > 0) {
//池内存在闲置连接,就等待 (保活时间-最长闲置时间,即到期时间)
return keepAliveDurationNs - longestIdleDurationNs;
} else if (inUseConnectionCount > 0) {
//有正在使用的连接,5分钟后再清理
return keepAliveDurationNs;
} else {
//无连接,停止清理(下次put会再次启动)
// No connections, idle or in use.
cleanupRunning = false;
return -1;
}
}
//关闭连接,返回时间0,立即再次进行请求(cleanupRunnable的while (true)会立即执行)
closeQuietly(longestIdleConnection.socket());
// Cleanup again immediately.
return 0;
}
接着我们看下RealConnection的创建和连接的建立:
streamAllocation.newStream—>findHealthyConnection—>findConnection
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
boolean connectionRetryEnabled) throws IOException {
Route selectedRoute;
synchronized (connectionPool) {
if (released) throw new IllegalStateException("released");
if (codec != null) throw new IllegalStateException("codec != null");
if (canceled) throw new IOException("Canceled");
//①StreamAllocation的connection如果可以复用则复用
// Attempt to use an already-allocated connection.
RealConnection allocatedConnection = this.connection;
if (allocatedConnection != null && !allocatedConnection.noNewStreams) {
return allocatedConnection;
}
//②如果connection不能复用,则从连接池中获取RealConnection对象,获取成功则返回
// Attempt to get a connection from the pool.
Internal.instance.get(connectionPool, address, this, null);
if (connection != null) {
return connection;
}
selectedRoute = route;
}
// If we need a route, make one. This is a blocking operation.
if (selectedRoute == null) {
selectedRoute = routeSelector.next();
}
RealConnection result;
synchronized (connectionPool) {
if (canceled) throw new IOException("Canceled");
// Now that we have an IP address, make another attempt at getting a connection from the pool.
// This could match due to connection coalescing.
Internal.instance.get(connectionPool, address, this, selectedRoute);
if (connection != null) {
route = selectedRoute;
return connection;
}
// Create a connection and assign it to this allocation immediately. This makes it possible
// for an asynchronous cancel() to interrupt the handshake we're about to do.
route = selectedRoute;
refusedStreamCount = 0;
//③如果连接池里没有,则new一个RealConnection对象
result = new RealConnection(connectionPool, selectedRoute);
acquire(result);
}
// Do TCP + TLS handshakes. This is a blocking operation.
//④调用RealConnection的connect()方法发起请求
result.connect(connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled);
routeDatabase().connected(result.route());
Socket socket = null;
synchronized (connectionPool) {
// ⑤将RealConnection对象存进连接池中,以便下次复用
Internal.instance.put(connectionPool, result);
// If another multiplexed connection to the same address was created concurrently, then
// release this connection and acquire that one.
if (result.isMultiplexed()) {
socket = Internal.instance.deduplicate(connectionPool, address, this);
result = connection;
}
}
closeQuietly(socket);
//⑥返回RealConnection对象
return result;
}
findConnection:
①StreamAllocation的connection如果可以复用则复用
②如果connection不能复用,则从连接池中获取RealConnection对象,获取成功则返回
③如果连接池里没有,则new一个RealConnection对象
④调用RealConnection的connect()方法发起请求
⑤将RealConnection对象存进连接池中,以便下次复用
⑥返回RealConnection对象
//RealConnection.java
public void connect(
int connectTimeout, int readTimeout, int writeTimeout, boolean connectionRetryEnabled) {
//...
//进行Socket连接
connectSocket(connectTimeout, readTimeout);
//...
}
private void connectSocket(int connectTimeout, int readTimeout) throws IOException {
Proxy proxy = route.proxy();
Address address = route.address();
rawSocket = proxy.type() == Proxy.Type.DIRECT || proxy.type() == Proxy.Type.HTTP
? address.socketFactory().createSocket()
: new Socket(proxy);
rawSocket.setSoTimeout(readTimeout);
try {
//建立socket连接 最终调用Java里的套接字Socket里的connect()方法。
Platform.get().connectSocket(rawSocket, route.socketAddress(), connectTimeout);
} catch (ConnectException e) {
ConnectException ce = new ConnectException("Failed to connect to " + route.socketAddress());
ce.initCause(e);
throw ce;
}
小结:
ConnectInterceptor拦截器从拦截器链中获取StreamAllocation对象,这个对象在第一个拦截器中创建,在ConnectInterceptor中才用到。
执行StreamAllocation对象的newStream方法创建HttpCodec对象,用来编码HTTP request和解码HTTP response。
newStream方法里面通过findConnection方法返回了一个RealConnection对象。
StreamAllocation对象的connect方法拿到上面返回的RealConnection对象,这个RealConnection对象是用来进行实际的网络IO传输的。
五、CallServerInterceptor(请求服务器拦截器)
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
//①获取拦截器链中的HttpCodec、StreamAllocation、RealConnection对象
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
realChain.eventListener().requestHeadersStart(realChain.call());
//②调用httpCodec.writeRequestHeaders(request)将请求头写入缓存(见下面Http2Codec的writeRequestHeaders方法)
httpCodec.writeRequestHeaders(request);
realChain.eventListener().requestHeadersEnd(realChain.call(), request);
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
//③判断是否有请求体,如果有,请求头通过携带特殊字段 Expect:100-continue来询问服务器是否愿意接受请求体。(一般用于上传大容量请求体或者需要验证)
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
//调用真正发送给服务器
httpCodec.flushRequest();
realChain.eventListener().responseHeadersStart(realChain.call());
//服务端返回100,表示愿意接受请求体responseBuilder为null(见下面Http2Codec的readResponseHeaders方法)
responseBuilder = httpCodec.readResponseHeaders(true);
}
if (responseBuilder == null) {
//服务器愿意会响应100(responseBuilder 即为nul)。这时候才能够继续发送剩余请求数据。
// Write the request body if the "Expect: 100-continue" expectation was met.
realChain.eventListener().requestBodyStart(realChain.call());
long contentLength = request.body().contentLength();
CountingSink requestBodyOut =
new CountingSink(httpCodec.createRequestBody(request, contentLength));
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
//写入请求体
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
realChain.eventListener()
.requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
} else if (!connection.isMultiplexed()) {
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
// from being reused. Otherwise we're still obligated to transmit the request body to
// leave the connection in a consistent state.
//服务器不愿意接受请求体,调用noNewStreams关闭相关socket
streamAllocation.noNewStreams();
}
}
//④结束请求
httpCodec.finishRequest();
/**代码走到这里的responseBuilder情况为:
* 1.post请求,请求头包含Expect,服务端允许接受请求体,并且已经发出了请求体,responseBuilder为null
* 2.post请求,请求头包含Expect,服务端不允许接受请求体,responseBuilder不为null
* 3.post请求,没有请求体,responseBuilder为null
* 3.get请求,responseBuilder为null
*/
if (responseBuilder == null) {
realChain.eventListener().responseHeadersStart(realChain.call());
//根据服务器返回的数据构建 responseBuilder对象 (传入的expectContinue为false,不会return null)
responseBuilder = httpCodec.readResponseHeaders(false);
}
//⑤构建Response对象
Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
//第一次查询服务器是否支持接受请求体的,而不是真正的请求对应的结果响应。所以接着:
int code = response.code();
if (code == 100) {
// server sent a 100-continue even though we did not request one.
// try again to read the actual response
//如果响应了100,这代表了请求Expect: 100-continue成功响应,需要马上再次读取一份响应头,这才是真正的请求对应的响应头。
responseBuilder = httpCodec.readResponseHeaders(false);
//⑤构建Response对象
response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
code = response.code();
}
realChain.eventListener()
.responseHeadersEnd(realChain.call(), response);
if (forWebSocket && code == 101) {
//WebSocket请求
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
//读取响应体数据
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
}
//客户端或者服务端不希望长连接,那么就关闭socket
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
streamAllocation.noNewStreams();
}
//如果服务器返回204/205(表示没有响应体),但是解析Content-Lenght>0(表示响应体字节长度),出现冲突,抛出协议异常
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
}
//⑥返回response
return response;
}
writeRequestHeaders和readResponseHeaders(以Http2Codec为例)
//Http2Codec.java
private Http2Stream stream;
@Override public void writeRequestHeaders(Request request) throws IOException {
if (stream != null) return;
boolean hasRequestBody = request.body() != null;
List<Header> requestHeaders = http2HeadersList(request);
stream = connection.newStream(requestHeaders, hasRequestBody);
stream.readTimeout().timeout(chain.readTimeoutMillis(), TimeUnit.MILLISECONDS);
stream.writeTimeout().timeout(chain.writeTimeoutMillis(), TimeUnit.MILLISECONDS);
}
@Override public Response.Builder readResponseHeaders(boolean expectContinue) throws IOException {
List<Header> headers = stream.takeResponseHeaders();
Response.Builder responseBuilder = readHttp2HeadersList(headers);
if (expectContinue && Internal.instance.code(responseBuilder) == HTTP_CONTINUE) {
//注意传过来的expectContinue
//服务端返回100,表示愿意接受请求体 responseBuilder为null
return null;
}
return responseBuilder;
}
小结:CallServerInterceptor完成HTTP协议报文的封装和解析。
①获取拦截器链中的HttpCodec、StreamAllocation、RealConnection对象
②调用httpCodec.writeRequestHeaders(request)将请求头写入缓存
③判断是否有请求体,如果有,请求头通过携带特殊字段 Expect:100-continue来询问服务器是否愿意接受请求体。(一般用于上传大容量请求体或者需要验证)
④通过httpCodec.finishRequest()结束请求
⑤通过responseBuilder构建Response
⑥返回Response