产品经理学技术

从零搭建精准运营系统

2019-02-14  本文已影响540人  左手java右手go

2018刚过去,趁着春节放假对过去一年主导开发的项目做个梳理和总结

项目背景

平台运营到一定阶段,一定会累积大批量的用户数据,这些用户数据是运营人员的黄金财产。而如何利用用户的数据来做运营(消息推送、触达消息、优惠券发送、广告位等),正是精准运营系统需要解决的问题。本文是基于信贷业务实践后写出来的,其它行业如保险、电商、航旅、游戏等也可以参考。

业务场景

先看几个具有代表性的需求

用户可用额度在20000~50000元,而且有借款记录,未还本金为0,性别为“男”
用户发生了A行为且未还本金大于5000
用户在1天内发生A行为次数大于等于3次
用户在A行为前24小时内未发生B行为
用户在A行为后一个月内未发生B行为

业务上有两种消息类型

对于用户筛选条件,也主要有两种类型

早期方案

早期方案.png

早期方案存在以下痛点

  1. 至少两次跨部门沟通配合成本,周期被拉长
  2. 非实时消息推送,无法实现基于用户行为的实时推送场景
  3. 非实时效果验证,无法及时调整运营策略

系统搭建的目标

技术选型

数据采集、转换、存储

下面重点看下kafka connector和Elasticsearch如何使用

kafka connector

kafka connector有Source和Sink两种组件,Source的作用是读取数据到kafka,这里用开源实现debezium来采集mysql的binlog和postgres的xlog。Sink的作用是从kafka读数据写到目标系统,这里自己研发一套组件,根据配置的规则将数据格式化再同步到ES。
kafka connector有以下优点:

Elasticsearch

对于状态数据,由于状态的写操作相对较少,我们采取嵌套文档的方式,将同个用户的相关实体数据都同步写入到同个文档,具体实现用painless脚本做局部更新操作。效果类似这样:

{
   "id":123,
   "age":30,
   "credit_line":20000,
   "education":"bachelor",
   ...
   "last_loan_applications":{
         "loan_id":1234,
         "status":"reject",
          ...
    }
  ...
}

事件数据写入比较频繁,数据量比较多,我们使用父子文档的方式做关联,效果类似这样:

{
  "e_uid":123,
  "e_name":"loan_application",
  "e_timestamp":"2019-01-01 10:10:00"
  ...
}

(e_前缀是为了防止同个index下同名字段冲突)
ES这样存储一方面是方便做统计报表,另一方面跟用户筛选和触达有关。

规则引擎

在设计规则引擎前,我们对业界已有的规则引擎,主要包括Esper, Drools, Flink CEP,进行了初步调研。

Esper

Esper设计目标为CEP的轻量级解决方案,可以方便的嵌入服务中,提供CEP功能。
优势:

劣势:

Drools Fusion

Drools开始于规则引擎,后引入Drools Fusion模块提供CEP的功能。
优势:

劣势:

Flink CEP

Flink 是一个流式系统,具有高吞吐低延迟的特点,Flink CEP是一套极具通用性、易于使用的实时流式事件处理方案。
优势:

劣势:

自定义规则

综上对比了几大开源规则引擎,发现都无法满足业务特点:

最终我们选择自己根据业务需要,开发基于json的自定义规则,规则类似下面例子:

{
  "batchId": "xxxxxxxx", //流水号,创建每条运营规则时生成
  "type": "trigger", //usual
  "triggerEvent": "login",
  "after": "2h", //分钟m,小时h,天d,月M
  "pushRules": [//支持同时推送多条不同类型的消息
    {
      "pushType": "sms", //wx,app,coupon
      "channel": "cl",
      "content": "hello #{userInfo.name}"
    },
    {
      "pushType": "coupon",
      "couponId": 1234
    }
  ],
  "statusConditions": [
    {
      "name": "and", //逻辑条件,支持与(and)或(or)非(not)
      "conditions": [
        {
          "name": "range",
          "field": "credit_line",
          "left": 2000,
          "right": 10000,
          "includeLeft": true,
          "includeRight": false
        },
        {
          "name":"in",
          "filed":"education",
          "values":["bachelor","master"]
        }
      ]
    }
  ],
  "eventConditions": [
    {
      "name": "or",//逻辑条件,支持与(and)或(or)非(not)
      "conditions": [
        {
          "name": "event",
          "function": "count", //聚合函数,目前只支持count
          "eventName": "xxx_button_click",
          "range": { //聚合结果做判断
            "left": 1,
            "includeLeft": true
          },
          "timeWindow": {
            "type": "fixed", //fixed为固定窗口,sliding为滑动窗口
            "start": "2019-01-01 01:01:01",
            "end": "2019-02-01 01:01:01"
          },
          "conditions": [ //event查询条件继承and逻辑条件,所以事件也可以过滤字段
            {
              "name": "equals",
              "field": "f1",
              "value": "v1"
            }
          ]
        }
      ]
    }
  ]
}

使用面向对象思维对过滤条件做抽象后,过滤条件继承关系如下:


过滤条件继承关系.png

然后代码里加一层parser把Condition都转成ES查询语句,实现轻量级的业务规则配置功能。

整体技术方案

整体技术方案

系统组成模块及功能如下:
mysql binlog:mysql的数据变更,由kafka connector插件读取到kafka,数据源之一
postgres xlog:pg的数据变更,由kafka connector插件读取到kafka,数据源之一
report server:事件上报服务,数据源之一
tags:用户画像系统计算出来的标签,数据源之一
触发场景路由:分实时触发和延迟触发,实时触发直接到下一步,延迟触发基于 redis的延迟队列实现
用户筛选处理器:将筛选规则翻译为ES查询语句到ES查询用户数据,可以是批量的和单个用户的
幂等处理器:对数据做幂等处理,防止重复消费
变量渲染处理器:对推送内容做处理
推送适配器:兼容不同的推送方式
BloomFilter记录器:将推送用户和流水号记录到redis,用于幂等处理
推送事件记录器:将推送事件推入kafka
定时任务模块:基于elastic-job,处理定时推送任务
规则配置控制台:提供可视化配置界面(运营规则配置、数据采集规则配置、字段元数据配置等)
报表服务:提供报表查询功能
运营位服务:提供外部接口,根据条件匹配运营位(如启动图、首页banner图片等)

总结与展望

未来会继续从技术及业务两方面入手,将系统建设的更加易用、高效。

欢迎您扫一扫上面的二维码关注个人微信公众号
上一篇 下一篇

猜你喜欢

热点阅读