区块链职场、创业、经营实战小说里的故事,生活里的童话

网络经营原理——区块链技术(上)

2017-04-25  本文已影响118人  7b832d6036b7

在“信息互联网”上,所有传递的信息都可以高效传播和复制,从而构成互联网的基础协议——TCP/ IP。然而,随着互联网开始进入人类生活的各个层面,我们发现有些信息是无法复制的,或者说复制是没有意义的。比如货币支付,我们不能把要支付的钱直接复制到对方账户上,而是一定要在付款账户上减去若干资金,然后在收款账户上增加若干资金。只有这样,这个支付行为才是有意义的,而不像新闻类信息,我们复制一份到新的网站上,就有了两份信息,可以让更多的人来进行分享。而这些不能分享,只能转移的信息,往往具有更大的价值,在它的背后需要有信用作背书,从而产生价值。因此,可以发现,我们的“信息互联网”非常善于处理“信息分享”,而不能解决“价值转移”或者说“信用”这件事情。

这里所谓的“价值转移”是指,在网络中以每个人都能够认可和确认的方式,将某一部分价值精确地从某一个地址转移到另一个地址,而且必须确保当价值转移后,原来的地址减少了被转移的部分,而新的地址增加了所转移的价值。这个“价值”可以是货币资产,也可以是某种实体资产或者虚拟资产(包括有价证券、金融衍生品等)。而这种操作的结果必须获得所有参与方的认可,且其结果不能受到任何某一方的操纵。

从以上的定义可以发现,目前互联网本身的协议并不支持这个“价值转移”功能。互联网TCP/ IP协议无法确认当信息发出去后本地的数据是否会精确改变,而某单点的数据篡改在现有的互联网系统中很难被全网发现。但是“价值转移”是金融系统的基础,而金融系统是人类生活的核心之一,因此下一代全球性互联网发展的核心问题就是要解决“价值转移”问题。

但是要真正完成以信用共识为基础的价值转移,需要一个能够取代第三方中介的方式,一个能够自动运行的方式,且具备去信任的机制(不需要依靠相信环节中的任何人或机构)的机制来完成价值的转移。

区块链技术

区块链本质上是一个去中心化的数据库,是一连串使用密码学方法产生相关联的数据块,每一个数据块中包含了一段时间内全网交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。所以说区块链是以去中心化和去信任化的方式,来集体维护一个可靠数据库的技术方案。

通俗地说,其实区块链可以称为一种全民记账的技术,或者说可以理解为一种分布式总账技术。

数据库是大家都熟悉的概念,任何的网站或者系统背后都有一个数据库,我们可以把数据库想象为一个账本,例如支付宝数据库就像是一个巨大的账本,里面记录每个人账上有多少钱。当A发送给B一元钱,那么就要把A账上的钱扣除一元,在B的账上增加一元,这个数据的变动就可以理解为一种记账行为。对一般中心化的结构来说,微信背后的数据库由腾讯的团队来维护,淘宝背后的数据库由阿里的团队来维护,这是很典型的中心化数据库管理方式,也是大家认为顺理成章的事情。

但是区块链完全颠覆了这种方式。

一个区块链系统由许多节点构成,这些节点一般就是一台计算机。在该系统中,每个参与的节点都有机会去竞争记账,即更新数据库信息。系统会在一段时间内(可能是十分钟,也可能是一秒钟),选出其中记账最快最好的一个节点,让它在这段时间里记账。它会把这段时间内数据的变化记录在一个数据区块(block)中,我们可以把这个数据区块想象成一页纸。在记完账以后,该节点就会把这一页的账本发给其他节点。其他节点会核实这一页账本是否无误,如果没有问题就会放入自己的账本中。

在系统里面,这一页账本的数据表现形式,称为区块,该区块中就记录了整个账本数据在这段时间里的改变。然后把这个更新结果发给系统里的每一个节点。于是,整个系统的每个节点都有着完全一样的账本。

我们把这种记账方式称为区块链技术或者分布式总账技术。

区块链技术是比特币的底层协议,我们可以通过了解比特币的生成与交易等一系列过程来理解区块链技术。

比特币使用整个P2P(互联网金融点对点借贷平台)网络中众多节点构成的分布式数据库,来确认并记录所有的交易行为。在信息传递过程中,发送方通过一把密钥将信息加密,接收方在收到信息后,再通过配对的另一把密钥对信息进行解密,这就保证了信息传递过程的私密性与安全性。比特币的交易并非简单的支付货币本身。如果B想支付100个比特币给C,那么不仅B需要在交易单上注明金额,而且需要注明这100个比特币的来源。由于每笔交易单都记录了该笔资金的前一个拥有者、当前拥有者以及后一个拥有者,就可以依据交易单来实现对资金的全程追溯。这也是比特币的典型特征之一。最后,当每一笔交易完成时,系统都会向全网进行广播,告诉所有用户这笔交易的实施。

由于每笔交易是相对分散的,为了更好地统计交易,比特币系统创造了区块这一概念。每个区块均包含以下三种要素:一是本区块的ID(散列),二是若干交易单,三是前一个区块的ID。比特币系统大约每10分钟创建一个区块,其中包含了这段时间里全网范围内发生的所有交易。每个区块中也包含了前一个区块的ID,这种设计使得每个区块都能找到其前一个节点,如此可一直倒推至起始节点,从而形成了一条完整的交易链条。因此,从比特币的诞生之日起,全网就形成了一条唯一的主区块链,其中记录了从比特币诞生以来的所有交易记录,并以每10分钟新增一个节点的速度无限扩展。这条主区块链在每添加一个节点后,都会向全网广播,从而使得每台参与比特币交易的电脑上都有一份拷贝。在现实世界中,每笔非现金交易都由银行系统进行记录,一旦银行计算机网络崩溃,所有数据都会遗失。而在互联网世界中,比特币的所有交易记录都保存在全球无数台计算机中,只要全球有一台装有比特币程序的计算机还能工作,这条主区块链就可以被完整地读取。如此高度冗余的交易信息存储,使得比特币主区块链完全遗失的可能性变得微乎其微。

每个人在对交易的有效性进行验证后都可以根据这些交易数据生成新区块。为了避免虚假交易或重复交易,使这一新区块被信任,需要构建工作量证明机制。如果想要修改某个区块内的交易信息,就必须完成该区块及其后续连接区块的所有工作量,这种机制大幅提高了篡改信息的难度。同时,工作量证明也解决了全网共识问题,全网认可最长的链,因为最长的链包含了最大的工作量。

综上所述,区块链是一串使用密码学方法相关联产生的数据块。在比特币的应用中,整个区块链就是比特币的公共账本,网络中的每一个节点都有比特币交易信息的备份。当发起一个比特币交易时,信息被广播到网络中,通过算力的比拼而获得合法记账权的矿工将交易信息记录成一个新的区块连接到区块链中,一旦被记录,信息就不能被随意篡改。比特币是区块链的一个“杀手级应用”,区块链是比特币的底层技术,且作用绝不仅仅局限在比特币上。

《经济学人》把区块链技术形象地比喻为“信任的机器”,即可以在没有中央权威的情况下,对彼此的协作创造信任。区块链技术适用于一切缺乏信任的领域,也许在未来会成为全球人类文明信任的基石,并有可能彻底改变全球的社会结构。

区块链系统

区块链系统由自下而上的数据层、网络层、共识层、激励层、合约层和应用层组成。

数据层封装了底层数据区块的链式结构,以及相关的非对称公私钥数据加密技术和时间戳等技术,这是整个区块链技术中最底层的数据机构,其中大多数技术都已被发明数十年,并在计算机领域使用了很久,无须担心其中的安全性,因为如果这些技术出现安全性上的巨大漏洞,则意味着全球金融技术都会出现严重的问题。

网络层包括分布式组网机制、数据传播机制和数据验证机制等,由于采用了完全P2P的组网技术,也就意味着区块链是具有自动组网功能的。这种P2P组网技术,在早先应用于BT(比特流)和eMule(电驴)之类的P2P下载软件中,也是一种相对来说非常成熟的技术。

共识层主要封装网络节点的各类共识机制算法。共识机制算法是区块链技术的核心技术,因为这决定了到底由谁来进行记账,记账者选择方式将会影响到整个系统的安全性和可靠性。目前已经出现了十余种共识机制算法,其中最为知名的有工作量证明机制(Proof of Work,PoW)、权益证明机制(Proof of Stake,PoS)、股份授权证明机制(Delegated Proof of Stake,DPoS)等。

激励层将经济因素集成到区块链技术体系中来,主要包括经济激励的发行机制和分配机制等,该层主要出现在公有链(Public Blockchain)中,因为在公有链中必须激励遵守规则参与记账的节点,并且惩罚不遵守规则的节点,才能让整个系统朝着良性循环的方向发展。所以激励机制往往也是一种博弈机制,让更多遵守规则的节点愿意进行记账。而在私有链(Private Blockchain)中,则不一定需要进行激励,因为参与记账的节点往往是在链外完成了博弈,也就是可能有强制力或者有其他需求来要求参与记账。

合约层主要封装各类脚本、算法和智能合约,是区块链可编程特性的基础。

应用层则封装了区块链的各种应用场景和案例。

基于时间戳的链式区块结构、分布式节点的共识机制、基于共识机制的经济激励和灵活可编程的智能合约是区块链技术最具代表性的创新点。其中数据层、网络层和共识层是构建区块链应用的必要因素,否则将不能称为真正意义上的区块链。而激励层、合约层和应用层则不是每个区块链应用的必要因素,有部分的区块链应用并不完整地包含着这三层结构。

共识机制

区块链通过数学共识机制是非对称加密算法,即在加密和解密的过程中使用一个“密钥对”,“密钥对”中的两个密钥具有非对称的特点:一是用其中一个密钥加密后,只有另一个密钥才能解开;二是其中一个密钥公开后,根据公开的密钥其他人也无法算出另一个密钥。在区块链的应用场景中,一是加密时的密钥是公开的、所有参与者可见的(公钥),每个参与者都可以用自己的公钥来加密一段信息(真实性),在解密时只有信息的拥有者才能用相应的私钥来解密(保密性),用于接收价值。二是使用私钥对信息签名,公开后通过其对应的公钥来验证签名,确保信息为真正的持有人发出。非对称加密使得任何参与者更容易达成共识,将价值交换中的摩擦边界降到最低,还能实现透明数据后的匿名性,保护个人隐私。

所谓工作量证明机制,是指一方(通常为证明者)提交已知难以计算但易于验证的计算结果,而其他任何人都能够通过验证这个答案就确信证明者为了求得结果已经完成了大量的计算工作。

比特币在区块链的生成过程中使用了PoW机制,一个符合要求的Block Hash(区块链散列值)由N个前导零构成,零的个数取决于网络的难度值。要得到合理的Block Hash需要经过大量尝试计算,计算时间取决于机器的哈希运算速度。当某个节点提供出一个合理的Block Hash值,说明该节点确实经过了大量的尝试计算。

权益证明机制是一种SHA256的替代方法,从根本上解决了工作量计算浪费的问题,它不要求证明者完成一定数量的计算工作,而是要求证明者对某些数量的钱展示所有权,通过每一笔交易销毁的币天数(coin days)来实现,币天数代表一个特定的币,距离最后一次在网络上交易的时间。在给定的时间点内,只存在有限币天数,它们在那些长期持有大量货币结余的人手中持续增加。所以币天数可被视为在网络中权益的代表(proxy,代理服务器)。每当这些币有交易时,币天数即被销毁,因此不能被重复使用。

简单地说,PoS就是把PoW由算力决定记账权变成由持有币数(以及持有的时间)来决定记账权。在PoW中,是按照算力占有总算力的百分比,从而决定你获得本次记账权的概率。在PoS中,持有币数占系统总币数的百分比(包括你占有币数所持有的时间),决定着获得本次记账权的概率。

这就类似于现实世界中的股票制度,在一个公司中,大家是按照持股比例来获得分红,持有股权相对较多的人获得更多的分红权。

股份授权证明机制,DPoS是一种新的保障区块链网络安全的算法。它在尝试解决比特币采用PoW以及PoS问题的同时,还能通过实施去中心化的民主方式,用以抵消中心化所带来的负面效应。在系统中,每个币就等于一张选票,持有币的人可以根据自己持有币的数量,来投出自己的若干张选票给自己信任的受托人。这些受托人可以是对系统有贡献的人,也可以是投票者所信赖的人,并且受托人并不一定需要拥有最多的系统资源。投票可以在任意时间进行,而系统会选出获得投票数量最多的101人(也可以是其他数量)作为系统受托人,他们的工作是签署(生产)区块,且在每个区块被签署之前,必须先验证前一个区块已经被受信任节点所签署。

这种共识机制模仿了公司的董事会制度,或者是议会制度。能够让数字货币持有者将维护系统记账和安全的工作交给有能力有时间的人来专职从事该项工作。由于受托人进行记账也能够获得新币的奖励,所以他们会努力拉票,并且维护好与投票者的关系及试图通过参与系统的发展,从而吸引更多人给他投票。

这解决了PoW中的一个主要问题,即在比特币的PoW系统中,持有比特币的人对于系统没有发言权,他们不能参与记账决定权,也不能左右系统的发展,因为系统发言权主要掌握在矿工和开发者手中。而如果矿工或者开发者做出了对比特币持有者不利的决定,比特币持有者除了自己离开系统之外,没有任何可以做的。而在DPoS中,持有者对于记账者拥有足够的选举权,任何试图对系统不利或者作恶的人都随时可能被投票者从受托人的位置直接拉下。

DPoS另外一个巨大优势就是由于记账人数量可控,并且轮流进行记账,能够通过提供更好的软硬件环境来构建效率极高的区块链系统。目前看来,DPoS似乎是效率最高的区块链系统,在理想环境下,能够实现每秒数十万笔的交易数量。

混合证明机制,由于不同共识证明机制有着不同的优劣势,有些系统选择采用多种共识机制的方式来取长补短。较为典型的就是以太坊采用了PoW+ PoS的共识机制。

区块链的类型

公有链,是指全世界任何人都可以在任何时候加入、任意读取数据,任何人都能发送交易且交易能获得有效确认,任何人都能参与共识过程的区块链——共识过程决定哪个区块可被添加到区块链中和明确当前状态。作为中心化或者准中心化信任的替代物,公有链的安全由“共识机制”来维护——“共识机制”可以采取PoW或PoS等方式,将经济奖励和加密算法验证结合了起来,并遵循着一般原则:每个人从中可获得的经济奖励与对共识过程做出的贡献成正比。这些区块链通常被认为是“完全去中心化”的。

在公有链中,程序开发者无权干涉用户,所以区块链可以保护使用他们开发的程序的用户。

私有链,是指其写入权限由某个组织和机构控制的区块链。读取权限或者对外开放,或者被进行了任意程度的限制。

联盟链(Consortium Blockchain),是指其共识过程受到预选节点控制的区块链。

许可链(Permissioned Blockchain),是指每个节点都是需要许可才能加入的区块链系统,私有链和联盟链都属于许可链。

混合链和复杂链,随着区块链技术变得越来越复杂,区块链的技术架构开始不仅仅简单地分为公有链、私有链等架构,而是这之间的界限逐渐开始模糊。在区块链的系统中,不再是所有节点都有着简单的一模一样的权限,而是开始有不同的分工。

有些节点可能只能查看部分区块链数据,有些节点能够下载完整的区块链数据,有些节点负责参与记账。而随着系统日益复杂,其中不同的角色,以及不同的权限等级会变得更多。其实我们在DPoS这样的共识机制中,已经能够看到这种趋势开始出现,并不是每个节点都参与记账,而是获得投票数量最多的受托人(Delegated)才开始进行记账,这样的受托人就是典型的角色划分。如果今后央行采用区块链技术发行人民币,肯定会选择类似于混合链这样的技术。

区块链的发展脉络

从诞生到现在,区块链专家梅兰妮·斯沃恩(Melanie Swan)将区块链发展划分为三个阶段:区块链1. 0、区块链2. 0、区块链3. 0。

区块链1. 0:以比特币为代表的可编程货币

区块链是一个全新的数字支付系统,其去中心化、基于密钥的毫无障碍的货币交易模式,在保证安全性的同时也大大降低了交易成本,对传统的金融体系可能产生颠覆性影响,也刻画出一幅理想的交易愿景——全球货币统一,使得货币发行流通不再依靠各国央行。区块链1. 0设置了货币的全新起点,但构建全球统一的区块链网络却还有很长的路要走。

区块链2. 0:基于区块链的可编程金融

数字货币的强大功能吸引了金融机构采用区块链技术开展业务,人们试着将“智能合约”加入区块链形成可编程金融。目前,可编程金融已经在包括股票、私募股权等领域有了初步的应用,包括目前交易所积极尝试用区块链技术实现股权登记、转让等功能;华尔街银行通过联合打造区块链行业标准,提高银行结算支付的效率,降低跨境支付的成本。

区块链3. 0:区块链在其他行业的应用

除了金融行业,区块链在其他领域也开始应用。在法律、零售、物联、医疗等领域,区块链可以解决信任问题,不再依靠第三方来建立信用和信息共享,提高整个行业的运行效率和整体水平。极高的生产力会将这个星球上所有的人和机器连接到一个全球性的网络中,人类向商品和服务近乎免费的时代加速迈进,也许到了21世纪下半叶,资本主义走向没落,区块链的去中心化协同共享模式将取而代之,成为主导经济生活的新模式。

上一篇 下一篇

猜你喜欢

热点阅读