Python-科学计算-pandas-03-两列相乘
2019-11-09 本文已影响0人
Data_Python_VBA
系统:Windows 7
语言版本:Anaconda3-4.3.0.1-Windows-x86_64
编辑器:pycharm-community-2016.3.2
- 这个系列讲讲Python的科学计算版块
- 今天讲讲pandas模块:DataFrame不同列相乘
Part 1:示例
- 已知一个
DataFrame
,有4列["quality_1", "measure_value", "up_tol", "down_tol"]
- 对应的实物意义是:对一个商品的四处位置测量其某一质量特性,并给出该四处的质量标准,上限和下限
- 本示例中,如何判断有几处位置其质量特性是不符合要求的,即
measure_value
列的值不在公差上下限范围内,采用的算法如下图
- 希望生成3个新的列(前面2列上一篇文章已经介绍过)
- 列
up_measure
中每个值=列up_tol
-列measure_value
- 列
measure_down
中每个值=列measure_value
-列down_tol
- 列
mul
中每个值=列up_measure
* 列measure_down
- 如果
mul
列小于0,则该位置质量特性不合格
- 列
判断超差

Part 2:代码
import pandas as pd
dict_1 = {"quality_1": ["pos_1", "pos_2", "pos_3", "pos_4", "pos_5"],
"measure_value": [6, 4, 6, 3.5, 2.5],
"up_tol": [5, 5, 3, 3, 2],
"down_tol": [-5, -5, -3, -3, 2]}
df = pd.DataFrame(dict_1, columns=["quality_1", "measure_value", "up_tol", "down_tol"])
df["up_measure"] = df["up_tol"] - df["measure_value"]
df["measure_down"] = df["measure_value"] - df["down_tol"]
df["mul"] = df["up_measure"].mul(df["measure_down"])
print(df)
df_2 = df[df["mul"] < 0]
print("\n", df_2)
unqualified_num = df_2["mul"].count()
print("\n不合格数目", unqualified_num)
代码截图

执行结果

Part 3:部分代码解读
-
df["mul"] = df["up_measure"].mul(df["measure_down"])
,两列每行分别相乘相减,生成一个新的列 -
df_2 = df[df["mul"] < 0]
,对df
进行筛选,筛选条件为:mul
列数值小于0 -
unqualified_num = df_2["mul"].count()
获取mul
列数目,也可以使用unqualified_num = df_2.shape
获取行数及列数
shape输出

本文为原创作品,欢迎分享朋友圈
长按图片识别二维码,关注本公众号
Python 优雅 帅气
