Prometheus神器之监控K8s集群
Prometheus 简介
Prometheus
是SoundCloud开源的一款开源软件。它的实现参考了Google内部的监控实现,与源自Google的Kubernetes结合起来非常合适。另外相比influxdb的方案,性能更加突出,而且还内置了报警功能。它针对大规模的集群环境设计了拉取式的数据采集方式,你只需要在你的应用里面实现一个metrics
接口,然后把这个接口告诉Prometheus
就可以完成数据采集了。
安装Prometheus
首先我们使用ConfigMap
的形式来设置Prometheus
的配置文件,如下
apiVersion: v1kind: ConfigMapmetadata: name: prometheus-configuration labels: app.kubernetes.io/name: prometheus app.kubernetes.io/part-of: ingress-nginx name: prometheus-configuration namespace: ingress-nginxdata: prometheus.yml: |- global: scrape_interval: 10s scrape_configs: - job_name: 'ingress-nginx-endpoints' kubernetes_sd_configs: - role: pod namespaces: names: - ingress-nginx relabel_configs: - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - source_labels: [__meta_kubernetes_service_name] regex: prometheus-server action: drop---
将以上配置文件保存为configuration.yaml
,然后执行命令:
$ kubectl apply -f configuration.yamlnamespace "ingress-nginx" createdconfigmap "prometheus-configuration" created
通过Deployment
部署Prometheus
,yaml文件如下:
---apiVersion: rbac.authorization.k8s.io/v1beta1kind: ClusterRolemetadata: name: prometheusrules: - apiGroups: [""] # "" indicates the core API group resources: - nodes - nodes/proxy - services - endpoints - pods verbs: - get - watch - list - apiGroups: - extensions resources: - ingresses verbs: - get - watch - list - nonResourceURLs: ["/metrics"] verbs: - get---apiVersion: v1kind: ServiceAccountmetadata: name: prometheus namespace: ingress-nginx labels: app: prometheus---apiVersion: rbac.authorization.k8s.io/v1beta1kind: ClusterRoleBindingmetadata: name: prometheussubjects: - kind: ServiceAccount name: prometheus namespace: ingress-nginxroleRef: kind: ClusterRole name: prometheus apiGroup: rbac.authorization.k8s.io---apiVersion: v1kind: ConfigMapmetadata: name: prometheus-conf namespace: ingress-nginx labels: app: prometheusdata: prometheus.yml: |- # my global config global: scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute. evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute. # scrape_timeout is set to the global default (10s). # Alertmanager configuration alerting: alertmanagers: - static_configs: - targets: # - alertmanager:9093 # Load rules once and periodically evaluate them according to the global 'evaluation_interval'. rule_files: # - "first_rules.yml" # - "second_rules.yml" # A scrape configuration containing exactly one endpoint to scrape: # Here it's Prometheus itself. scrape_configs: # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config. - job_name: 'prometheus' # metrics_path defaults to '/metrics' # scheme defaults to 'http'. static_configs: - targets: ['localhost:9090'] - job_name: 'grafana' static_configs: - targets: - 'grafana.ingress-nginx:3000' - job_name: 'kubernetes-apiservers' kubernetes_sd_configs: - role: endpoints # Default to scraping over https. If required, just disable this or change to # `http`. scheme: https # This TLS & bearer token file config is used to connect to the actual scrape # endpoints for cluster components. This is separate to discovery auth # configuration because discovery & scraping are two separate concerns in # Prometheus. The discovery auth config is automatic if Prometheus runs inside # the cluster. Otherwise, more config options have to be provided within the # <kubernetes_sd_config>. tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt # If your node certificates are self-signed or use a different CA to the # master CA, then disable certificate verification below. Note that # certificate verification is an integral part of a secure infrastructure # so this should only be disabled in a controlled environment. You can # disable certificate verification by uncommenting the line below. # # insecure_skip_verify: true bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token # Keep only the default/kubernetes service endpoints for the https port. This # will add targets for each API server which Kubernetes adds an endpoint to # the default/kubernetes service. relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https # Scrape config for nodes (kubelet). # # Rather than connecting directly to the node, the scrape is proxied though the # Kubernetes apiserver. This means it will work if Prometheus is running out of # cluster, or can't connect to nodes for some other reason (e.g. because of # firewalling). - job_name: 'kubernetes-nodes' # Default to scraping over https. If required, just disable this or change to # `http`. scheme: https # This TLS & bearer token file config is used to connect to the actual scrape # endpoints for cluster components. This is separate to discovery auth # configuration because discovery & scraping are two separate concerns in # Prometheus. The discovery auth config is automatic if Prometheus runs inside # the cluster. Otherwise, more config options have to be provided within the # <kubernetes_sd_config>. tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token kubernetes_sd_configs: - role: node relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics # Scrape config for Kubelet cAdvisor. # # This is required for Kubernetes 1.7.3 and later, where cAdvisor metrics # (those whose names begin with 'container_') have been removed from the # Kubelet metrics endpoint. This job scrapes the cAdvisor endpoint to # retrieve those metrics. # # In Kubernetes 1.7.0-1.7.2, these metrics are only exposed on the cAdvisor # HTTP endpoint; use "replacement: /api/v1/nodes/${1}:4194/proxy/metrics" # in that case (and ensure cAdvisor's HTTP server hasn't been disabled with # the --cadvisor-port=0 Kubelet flag). # # This job is not necessary and should be removed in Kubernetes 1.6 and # earlier versions, or it will cause the metrics to be scraped twice. - job_name: 'kubernetes-cadvisor' # Default to scraping over https. If required, just disable this or change to # `http`. scheme: https # This TLS & bearer token file config is used to connect to the actual scrape # endpoints for cluster components. This is separate to discovery auth # configuration because discovery & scraping are two separate concerns in # Prometheus. The discovery auth config is automatic if Prometheus runs inside # the cluster. Otherwise, more config options have to be provided within the # <kubernetes_sd_config>. tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token kubernetes_sd_configs: - role: node relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor # Scrape config for service endpoints. # # The relabeling allows the actual service scrape endpoint to be configured # via the following annotations: # # * `prometheus.io/scrape`: Only scrape services that have a value of `true` # * `prometheus.io/scheme`: If the metrics endpoint is secured then you will need # to set this to `https` & most likely set the `tls_config` of the scrape config. # * `prometheus.io/path`: If the metrics path is not `/metrics` override this. # * `prometheus.io/port`: If the metrics are exposed on a different port to the # service then set this appropriately. - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name # Example scrape config for probing services via the Blackbox Exporter. # # The relabeling allows the actual service scrape endpoint to be configured # via the following annotations: # # * `prometheus.io/probe`: Only probe services that have a value of `true` - job_name: 'kubernetes-services' metrics_path: /probe params: module: [http_2xx] kubernetes_sd_configs: - role: service relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe] action: keep regex: true - source_labels: [__address__] target_label: __param_target - target_label: __address__ replacement: blackbox-exporter.example.com:9115 - source_labels: [__param_target] target_label: instance - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] target_label: kubernetes_name # Example scrape config for probing ingresses via the Blackbox Exporter. # # The relabeling allows the actual ingress scrape endpoint to be configured # via the following annotations: # # * `prometheus.io/probe`: Only probe services that have a value of `true` - job_name: 'kubernetes-ingresses' metrics_path: /probe params: module: [http_2xx] kubernetes_sd_configs: - role: ingress relabel_configs: - source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe] action: keep regex: true - source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path] regex: (.+);(.+);(.+) replacement: ${1}://${2}${3} target_label: __param_target - target_label: __address__ replacement: blackbox-exporter.example.com:9115 - source_labels: [__param_target] target_label: instance - action: labelmap regex: __meta_kubernetes_ingress_label_(.+) - source_labels: [__meta_kubernetes_namespace] target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_ingress_name] target_label: kubernetes_name # Example scrape config for pods # # The relabeling allows the actual pod scrape endpoint to be configured via the # following annotations: # # * `prometheus.io/scrape`: Only scrape pods that have a value of `true` # * `prometheus.io/path`: If the metrics path is not `/metrics` override this. # * `prometheus.io/port`: Scrape the pod on the indicated port instead of the # pod's declared ports (default is a port-free target if none are declared). - job_name: 'kubernetes-pods' kubernetes_sd_configs: - role: pod relabel_configs: - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port] action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 target_label: __address__ - action: labelmap regex: __meta_kubernetes_pod_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_pod_name] action: replace target_label: kubernetes_pod_name---apiVersion: v1kind: ConfigMapmetadata: name: prometheus-rules namespace: ingress-nginx labels: app: prometheusdata: cpu-usage.rule: | groups: - name: NodeCPUUsage rules: - alert: NodeCPUUsage expr: (100 - (avg by (instance) (irate(node_cpu{name="node-exporter",mode="idle"}[5m])) * 100)) > 75 for: 2m labels: severity: "page" annotations: summary: "{{$labels.instance}}: High CPU usage detected" description: "{{$labels.instance}}: CPU usage is above 75% (current value is: {{ $value }})"---kind: DeploymentapiVersion: apps/v1beta2metadata: labels: app: prometheus name: prometheus namespace: ingress-nginxspec: replicas: 1 revisionHistoryLimit: 10 selector: matchLabels: app: prometheus template: metadata: labels: app: prometheus spec: serviceAccountName: prometheus securityContext: runAsUser: 65534 fsGroup: 65534 containers: - name: prometheus image: prom/prometheus:latest volumeMounts: - mountPath: /etc/prometheus/prometheus.yml name: prometheus-conf-volume subPath: prometheus.yml - mountPath: /etc/prometheus/rules name: prometheus-rules-volume ports: - containerPort: 9090 protocol: TCP volumes: - name: prometheus-conf-volume configMap: name: prometheus-conf - name: prometheus-rules-volume configMap: name: prometheus-rules tolerations: - key: node-role.kubernetes.io/master effect: NoSchedule---kind: ServiceapiVersion: v1metadata: annotations: prometheus.io/scrape: 'true' labels: app: prometheus name: prometheus-service namespace: ingress-nginxspec: ports: - port: 9090 targetPort: 9090 selector: app: prometheus type: NodePort
将以上文件保存为prometheus.yaml
,然后执行命令:
$ kubectl apply -f prometheus.yamlclusterrole "prometheus" createdserviceaccount "prometheus" createdclusterrolebinding "prometheus" createdconfigmap "prometheus-conf" createdconfigmap "prometheus-rules" createddeployment "prometheus" createdservice "prometheus-service" created
部署node-exporter
,为了能够收集每个节点的信息,所以我们这里使用DaemonSet
的形式部署:
kind: DaemonSetapiVersion: apps/v1beta2metadata: labels: app: node-exporter name: node-exporter namespace: ingress-nginxspec: revisionHistoryLimit: 10 selector: matchLabels: app: node-exporter template: metadata: labels: app: node-exporter spec: containers: - name: node-exporter image: prom/node-exporter:v0.16.0 ports: - containerPort: 9100 protocol: TCP name: http hostNetwork: true hostPID: true tolerations: - effect: NoSchedule operator: Exists---kind: ServiceapiVersion: v1metadata: labels: app: node-exporter name: node-exporter-service namespace: ingress-nginxspec: ports: - name: http port: 9100 nodePort: 31672 protocol: TCP type: NodePort selector: app: node-exporter
将以上文件保存为node-exporter.yaml
,然后执行命令:
$ kubectl apply -f node-exporter.yamldaemonset "node-exporter" createdservice "node-exporter-service" created
接下来暴露服务以便可以访问Prometheus
的UI界面,查看NodePort:
[root@dtdream-dtwarebase-prod-k8s-01 monitoring]# kubectl -s10.90.2.100:8080 -ningress-nginx get svc,po -owideNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTORsvc/node-exporter-service NodePort 10.254.208.254 <none> 9100:31672/TCP 55s app=node-exportersvc/prometheus-service NodePort 10.254.187.175 <none> 9090:25759/TCP 3m app=prometheusNAME READY STATUS RESTARTS AGE IP NODEpo/node-exporter-b47ch 1/1 Running 0 54s 10.90.2.102 10.90.2.102po/node-exporter-q88pp 1/1 Running 0 54s 10.90.2.100 10.90.2.100po/prometheus-7b7fd77c44-7cf6z 1/1 Running 0 3m 172.17.21.28 10.90.2.101
然后用浏览器访问http://10.90.2.101:9090
就可以访问到Prometheus的界面了。
可以切换到Status
下面的targets
查看我们采集的数据是否正常:
可以根据targets
下面的提示信息对采集失败的数据进行修正。
查询监控数据
Prometheus
提供了API的方式进行数据查询,同样可以使用query语言进行复杂的查询任务,在上面的WEB界面上提供了基本的查询和图形化的展示功能。
比如查询每个POD
的CPU使用情况,查询条件如下:
sum by (pod_name)( rate(container_cpu_usage_seconds_total{image!="", pod_name!=""}[1m] ) )
注意其中的pod_name
和image
要根据自己采集的数据进行区分。
安装Grafana
Prometheus
以及获取到了我们采集的数据,现在我们需要一个更加强大的图标展示工具,毫无疑问选择grafana
,同样的,在Kubernetes
环境下面进行安装,yaml文件如下:
apiVersion: extensions/v1beta1kind: Deploymentmetadata: labels: app.kubernetes.io/name: grafana app.kubernetes.io/part-of: ingress-nginx name: grafana namespace: ingress-nginxspec: selector: matchLabels: app.kubernetes.io/name: grafana app.kubernetes.io/part-of: ingress-nginx strategy: rollingUpdate: maxSurge: 1 maxUnavailable: 1 type: RollingUpdate template: metadata: labels: app.kubernetes.io/name: grafana app.kubernetes.io/part-of: ingress-nginx spec: containers: - image: grafana/grafana name: grafana ports: - containerPort: 3000 protocol: TCP resources: limits: cpu: 500m memory: 2500Mi requests: cpu: 100m memory: 100Mi volumeMounts: - mountPath: /var/lib/grafana name: data restartPolicy: Always volumes: - emptyDir: {} name: data---apiVersion: v1kind: Servicemetadata: name: grafana namespace: ingress-nginx labels: app.kubernetes.io/name: grafana app.kubernetes.io/part-of: ingress-nginxspec: ports: - port: 3000 protocol: TCP targetPort: 3000 selector: app.kubernetes.io/name: grafana app.kubernetes.io/part-of: ingress-nginx type: NodePort---
将以上文件保存为grafana.yaml
,然后执行命令:
$ kubectl apply -f grafana.yamldeployment "grafana" createdservice "grafana" created
可以选择使用ingress
将服务暴露在外网进行访问。 访问grafana
WEB界面,我这里就直接使用的Nodeport。
查看grafana访问端口
$ kubectl -ningress-nginx get svc,po|grep grafanasvc/grafana NodePort 10.254.86.182 <none> 3000:7006/TCP 2mpo/grafana-85fbffb76f-x6hqw 1/1 Running 0 2m
访问http://10.90.2.101:7006
将我们上面的Prometheus
添加到grafana
数据源中去。
然后添加我们的Dashboard
,可以使用https://grafana.com/dashboards/162,可以下载该页面的dashboard的json文件,然后直接导入到grafana
中去,但是需要注意其中的一些参数,需要根据prometheus
中采集到实际数据进行填写,比如我们这里采集到容器名是name
,而不是io_kubernetes_container_name
,最终展示界面如下:
上面用的yaml
文件可以到github
上查看https://github.com/jcops/k8s-yaml/tree/master/monitoring
欢迎您关注程序员同行者订阅号,程序员同行者是一个技术分享平台,主要是运维自动化开发:linux、python、django、saltstack、redis、golang、docker、kubernetes、vue等经验分享及经验交流。
牛人并不可怕,可怕的是牛人比我们还努力!
如果您觉得不错,请别忘了转发、分享、点赞让更多的人去学习, 您的举手之劳,就是对小编最好的支持,非常感谢!
image