呆鸟的Python数据分析

利用Python进行数据分析第二版复现(七)

2020-02-02  本文已影响0人  一行白鹭上青天

第08章 数据规整:聚合、合并和重塑

8.1 层次化索引

import pandas as pd
import numpy as np

data = pd.Series(np.random.randn(9),
                 index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],
                        [1, 2, 3, 1, 3, 1, 2, 2, 3]])
print(data)
data.index
a  1    1.134771
   2   -0.654912
   3    0.048867
b  1   -1.380427
   3   -0.231125
c  1    1.131460
   2    1.109319
d  2    0.064049
   3   -1.437599
dtype: float64





MultiIndex([('a', 1),
            ('a', 2),
            ('a', 3),
            ('b', 1),
            ('b', 3),
            ('c', 1),
            ('c', 2),
            ('d', 2),
            ('d', 3)],
           )
#可以对数据进行多层次的选择
print(data['b':'c'])
print('\n')
print(data.loc[['b', 'd']])
print('\n')
print(data.loc[:, 2])
b  1   -1.380427
   3   -0.231125
c  1    1.131460
   2    1.109319
dtype: float64


b  1   -1.380427
   3   -0.231125
d  2    0.064049
   3   -1.437599
dtype: float64


a   -0.654912
c    1.109319
d    0.064049
dtype: float64
#可以通过unstack方法将这段数据重新安排到1个DataFrame中
print(data.unstack())
          1         2         3
a  1.134771 -0.654912  0.048867
b -1.380427       NaN -0.231125
c  1.131460  1.109319       NaN
d       NaN  0.064049 -1.437599
#unstack的逆运算是stack:
print(data.unstack().stack())
a  1    1.134771
   2   -0.654912
   3    0.048867
b  1   -1.380427
   3   -0.231125
c  1    1.131460
   2    1.109319
d  2    0.064049
   3   -1.437599
dtype: float64
#对于1个DataFrame,每条轴都可以有分层索引
frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
                     index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
                     columns=[['Ohio', 'Ohio', 'Colorado'],
                              ['Green', 'Red', 'Green']])
print(frame)
     Ohio     Colorado
    Green Red    Green
a 1     0   1        2
  2     3   4        5
b 1     6   7        8
  2     9  10       11
#如果指定了名称,它们就会显示在控制台输出中:
frame.index.names = ['key1', 'key2']
frame.columns.names = ['state', 'color']
print(frame)
state      Ohio     Colorado
color     Green Red    Green
key1 key2                   
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11

重排与分级

print(frame.swaplevel('key1', 'key2'))
state      Ohio     Colorado
color     Green Red    Green
key2 key1                   
1    a        0   1        2
2    a        3   4        5
1    b        6   7        8
2    b        9  10       11
#sort_index则根据单个级别中的值对数据进行排序。
print(frame.sort_index(level=1))
print('\n')
print(frame.swaplevel(0, 1).sort_index(level=0))
state      Ohio     Colorado
color     Green Red    Green
key1 key2                   
a    1        0   1        2
b    1        6   7        8
a    2        3   4        5
b    2        9  10       11


state      Ohio     Colorado
color     Green Red    Green
key2 key1                   
1    a        0   1        2
     b        6   7        8
2    a        3   4        5
     b        9  10       11

根据级别汇总统计

对DataFrame和Series的描述和汇总统计都有1个level选项,它用于指定在某条轴上求和的级
别。

print(frame.sum(level='key2'))
print('\n')
print(frame.sum(level='color', axis=1))
state  Ohio     Colorado
color Green Red    Green
key2                    
1         6   8       10
2        12  14       16


color      Green  Red
key1 key2            
a    1         2    1
     2         8    4
b    1        14    7
     2        20   10

使用DataFrame的列进行索引

frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1),
                      'c': ['one', 'one', 'one', 'two', 'two',
                            'two', 'two'],
                      'd': [0, 1, 2, 0, 1, 2, 3]})
print(frame)
   a  b    c  d
0  0  7  one  0
1  1  6  one  1
2  2  5  one  2
3  3  4  two  0
4  4  3  two  1
5  5  2  two  2
6  6  1  two  3
#DataFrame的set_index函数会将其1个或多个列转换为行索引,并创建1个新的DataFrame
frame2 = frame.set_index(['c', 'd'])
print(frame2)
print('\n')
print( frame.set_index(['c', 'd'], drop=False))
       a  b
c   d      
one 0  0  7
    1  1  6
    2  2  5
two 0  3  4
    1  4  3
    2  5  2
    3  6  1


       a  b    c  d
c   d              
one 0  0  7  one  0
    1  1  6  one  1
    2  2  5  one  2
two 0  3  4  two  0
    1  4  3  two  1
    2  5  2  two  2
    3  6  1  two  3
#reset_index的功能跟set_index刚好相反,层次化索引的级别会被转移到列
print(frame2.reset_index())
     c  d  a  b
0  one  0  0  7
1  one  1  1  6
2  one  2  2  5
3  two  0  3  4
4  two  1  4  3
5  two  2  5  2
6  two  3  6  1

合并数据集

pandas对象中的数据可以通过1些方式进行合并:
pandas.merge可根据1个或多个键将不同DataFrame中的行连接起来。SQL或其他关系型数据库
的用户对此应该会比较熟悉,因为它实现的就是数据库的join操作。
pandas.concat可以沿着1条轴将多个对象堆叠到1起。
实例方法combine_first可以将重复数据拼接在1起,用一个对象中的值填充另1个对象中的缺失值。

数据库风格的DataFrame合并

数据集的合并(merge)或连接(join)运算是通过1个或多个键将行连接起来的。

df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
                    'data1': range(7)})
df2 = pd.DataFrame({'key': ['a', 'b', 'd'],
                    'data2': range(3)})
print(df1)
print('\n')
print(df2)
print('\n')
print( pd.merge(df1, df2))
  key  data1
0   b      0
1   b      1
2   a      2
3   c      3
4   a      4
5   a      5
6   b      6


  key  data2
0   a      0
1   b      1
2   d      2


  key  data1  data2
0   b      0      1
1   b      1      1
2   b      6      1
3   a      2      0
4   a      4      0
5   a      5      0
#如果没有指定,merge就会将重叠列的列名当做键
#可以指明一下的。
print(pd.merge(df1, df2, on='key'))
  key  data1  data2
0   b      0      1
1   b      1      1
2   b      6      1
3   a      2      0
4   a      4      0
5   a      5      0
df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
                    'data1': range(7)})
df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],
                    'data2': range(3)})
print(pd.merge(df3, df4, left_on='lkey', right_on='rkey'))
  lkey  data1 rkey  data2
0    b      0    b      1
1    b      1    b      1
2    b      6    b      1
3    a      2    a      0
4    a      4    a      0
5    a      5    a      0
#认情况下,merge做的是“内连接”;结果中的键是交集。其他方式还有"left"、"right"以及"outer"。
#how选项,说明
#inner;使用两个表都有的键
#left:使用左表中的所有的键
#right:使用右表中所有的键
#outer:使用两个表中所有的键
df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
                    'data1': range(6)})
df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
                    'data2': range(5)})
print(df1)
print('\n')
print(df2)
print('\n')
print(pd.merge(df1, df2, on='key', how='left'))

  key  data1
0   b      0
1   b      1
2   a      2
3   c      3
4   a      4
5   b      5


  key  data2
0   a      0
1   b      1
2   a      2
3   b      3
4   d      4


   key  data1  data2
0    b      0    1.0
1    b      0    3.0
2    b      1    1.0
3    b      1    3.0
4    a      2    0.0
5    a      2    2.0
6    c      3    NaN
7    a      4    0.0
8    a      4    2.0
9    b      5    1.0
10   b      5    3.0
left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
                     'key2': ['one', 'two', 'one'],
                     'lval': [1, 2, 3]})
right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
                      'key2': ['one', 'one', 'one', 'two'],
                      'rval': [4, 5, 6, 7]})
print( pd.merge(left, right, on=['key1', 'key2'], how='outer'))
  key1 key2  lval  rval
0  foo  one   1.0   4.0
1  foo  one   1.0   5.0
2  foo  two   2.0   NaN
3  bar  one   3.0   6.0
4  bar  two   NaN   7.0

merge函数的参数如下:


在这里插入图片描述
在这里插入图片描述

索引上的合并

可以传入left_index=True或right_index=True(或两个都传)以说明索引应该被用作连接键.
DataFrame还有1个便捷的join实例方法,它能更为方便地实现按索引合并。它还可用于合并多个带有相同或相似索引的DataFrame对象,但要求没有重叠的列。

left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
                      'value': range(6)})
right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
print(pd.merge(left1, right1, left_on='key', right_index=True))
print('\n')
print( pd.merge(left1, right1, left_on='key', right_index=True, how='outer'))
  key  value  group_val
0   a      0        3.5
2   a      2        3.5
3   a      3        3.5
1   b      1        7.0
4   b      4        7.0


  key  value  group_val
0   a      0        3.5
2   a      2        3.5
3   a      3        3.5
1   b      1        7.0
4   b      4        7.0
5   c      5        NaN
left2 = pd.DataFrame([[1., 2.], [3., 4.], [5., 6.]],
                     index=['a', 'c', 'e'],
                     columns=['Ohio', 'Nevada'])
right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
                      index=['b', 'c', 'd', 'e'],
                      columns=['Missouri', 'Alabama'])
another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]],
                       index=['a', 'c', 'e', 'f'],
                       columns=['New York','Oregon'])
print( left2.join([right2, another]))
print('\n')
print( left2.join([right2, another], how='outer'))
   Ohio  Nevada  Missouri  Alabama  New York  Oregon
a   1.0     2.0       NaN      NaN       7.0     8.0
c   3.0     4.0       9.0     10.0       9.0    10.0
e   5.0     6.0      13.0     14.0      11.0    12.0


   Ohio  Nevada  Missouri  Alabama  New York  Oregon
a   1.0     2.0       NaN      NaN       7.0     8.0
c   3.0     4.0       9.0     10.0       9.0    10.0
e   5.0     6.0      13.0     14.0      11.0    12.0
b   NaN     NaN       7.0      8.0       NaN     NaN
d   NaN     NaN      11.0     12.0       NaN     NaN
f   NaN     NaN       NaN      NaN      16.0    17.0

轴向连接

NumPy的concatenation函数可以用NumPy数组来做

arr = np.arange(12).reshape((3, 4))
print(np.concatenate([arr, arr], axis=1))
[[ 0  1  2  3  0  1  2  3]
 [ 4  5  6  7  4  5  6  7]
 [ 8  9 10 11  8  9 10 11]]
s1 = pd.Series([0, 1], index=['a', 'b'])
s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
s3 = pd.Series([5, 6], index=['f', 'g'])
print(pd.concat([s1, s2, s3]))
a    0
b    1
c    2
d    3
e    4
f    5
g    6
dtype: int64
#如果传入axis=1,则结果就会变成1个DataFrame(axis=1是列)
print( pd.concat([s1, s2, s3], axis=1))
     0    1    2
a  0.0  NaN  NaN
b  1.0  NaN  NaN
c  NaN  2.0  NaN
d  NaN  3.0  NaN
e  NaN  4.0  NaN
f  NaN  NaN  5.0
g  NaN  NaN  6.0


E:\anaconda\lib\site-packages\ipykernel_launcher.py:2: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.
s4 = pd.concat([s1, s3])
print(pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']]))
print('\n')
result = pd.concat([s1, s1, s3], keys=['one','two', 'three'])
print(result )
     0    1
a  0.0  0.0
c  NaN  NaN
b  1.0  1.0
e  NaN  NaN


one    a    0
       b    1
two    a    0
       b    1
three  f    5
       g    6
dtype: int64


E:\anaconda\lib\site-packages\ipykernel_launcher.py:2: FutureWarning: The join_axes-keyword is deprecated. Use .reindex or .reindex_like on the result to achieve the same functionality.
df1 = pd.DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c', 'd'])
df2 = pd.DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a'])
print( pd.concat([df1, df2], ignore_index=True))
          a         b         c         d
0  0.939916  0.058807  0.934696  0.423455
1  2.174978 -0.967914 -1.201105  0.652898
2 -0.954785 -0.290665 -1.765156  0.421590
3 -0.884476 -1.116925       NaN  0.022045
4  0.642564 -1.195369       NaN  0.862140


E:\anaconda\lib\site-packages\ipykernel_launcher.py:3: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

  This is separate from the ipykernel package so we can avoid doing imports until
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NRhRVpQh-1580632515389)(attachment:33.png)]

合并重叠数据

a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
              index=['f', 'e', 'd', 'c', 'b', 'a'])
b = pd.Series(np.arange(len(a), dtype=np.float64),
              index=['f', 'e', 'd', 'c', 'b', 'a'])
b[-1] = np.nan
np.where(pd.isnull(a), b, a)
array([0. , 2.5, 2. , 3.5, 4.5, nan])
print(b[:-2].combine_first(a[2:]))
a    NaN
b    4.5
c    3.0
d    2.0
e    1.0
f    0.0
dtype: float64

8.3 重塑和轴向旋转

重塑层次化索引

stack:将数据的列“旋转”为行。
unstack:将数据的⾏“旋转”为列。

data = pd.DataFrame(np.arange(6).reshape((2, 3)),
                    index=pd.Index(['Ohio','Colorado'], name='state'),
                    columns=pd.Index(['one', 'two', 'three'],
                                     name='number'))
print(data)
result = data.stack()
print('\n')
print(result)
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5


state     number
Ohio      one       0
          two       1
          three     2
Colorado  one       3
          two       4
          three     5
dtype: int32
s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
data2 = pd.concat([s1, s2], keys=['one', 'two'])
print(data2)
print('\n')
print(data2.unstack())
print('\n')
print(data2.unstack().stack())
one  a    0
     b    1
     c    2
     d    3
two  c    4
     d    5
     e    6
dtype: int64


       a    b    c    d    e
one  0.0  1.0  2.0  3.0  NaN
two  NaN  NaN  4.0  5.0  6.0


one  a    0.0
     b    1.0
     c    2.0
     d    3.0
two  c    4.0
     d    5.0
     e    6.0
dtype: float64

将“长格式”旋转为“宽格式”

data = pd.read_csv('examples/macrodata.csv')
print(data.head())
     year  quarter   realgdp  realcons  realinv  realgovt  realdpi    cpi  \
0  1959.0      1.0  2710.349    1707.4  286.898   470.045   1886.9  28.98   
1  1959.0      2.0  2778.801    1733.7  310.859   481.301   1919.7  29.15   
2  1959.0      3.0  2775.488    1751.8  289.226   491.260   1916.4  29.35   
3  1959.0      4.0  2785.204    1753.7  299.356   484.052   1931.3  29.37   
4  1960.0      1.0  2847.699    1770.5  331.722   462.199   1955.5  29.54   

      m1  tbilrate  unemp      pop  infl  realint  
0  139.7      2.82    5.8  177.146  0.00     0.00  
1  141.7      3.08    5.1  177.830  2.34     0.74  
2  140.5      3.82    5.3  178.657  2.74     1.09  
3  140.0      4.33    5.6  179.386  0.27     4.06  
4  139.6      3.50    5.2  180.007  2.31     1.19  
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,
                         name='date')
columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')
data = data.reindex(columns=columns)
data.index = periods.to_timestamp('D', 'end')
ldata = data.stack().reset_index().rename(columns={0: 'value'})
pivoted = ldata.pivot('date', 'item', 'value')
print(pivoted)
item                           infl    realgdp  unemp
date                                                 
1959-03-31 23:59:59.999999999  0.00   2710.349    5.8
1959-06-30 23:59:59.999999999  2.34   2778.801    5.1
1959-09-30 23:59:59.999999999  2.74   2775.488    5.3
1959-12-31 23:59:59.999999999  0.27   2785.204    5.6
1960-03-31 23:59:59.999999999  2.31   2847.699    5.2
...                             ...        ...    ...
2008-09-30 23:59:59.999999999 -3.16  13324.600    6.0
2008-12-31 23:59:59.999999999 -8.79  13141.920    6.9
2009-03-31 23:59:59.999999999  0.94  12925.410    8.1
2009-06-30 23:59:59.999999999  3.37  12901.504    9.2
2009-09-30 23:59:59.999999999  3.56  12990.341    9.6

[203 rows x 3 columns]
ldata['value2'] = np.random.randn(len(ldata))
print(ldata[:10])
                           date     item     value    value2
0 1959-03-31 23:59:59.999999999  realgdp  2710.349  1.227679
1 1959-03-31 23:59:59.999999999     infl     0.000  0.659434
2 1959-03-31 23:59:59.999999999    unemp     5.800  0.834788
3 1959-06-30 23:59:59.999999999  realgdp  2778.801 -0.311874
4 1959-06-30 23:59:59.999999999     infl     2.340 -1.235061
5 1959-06-30 23:59:59.999999999    unemp     5.100  1.055687
6 1959-09-30 23:59:59.999999999  realgdp  2775.488  0.856784
7 1959-09-30 23:59:59.999999999     infl     2.740 -0.009388
8 1959-09-30 23:59:59.999999999    unemp     5.300  0.661178
9 1959-12-31 23:59:59.999999999  realgdp  2785.204  0.116387

将“宽格式”旋转为“长格式”

 df = pd.DataFrame({'key': ['foo', 'bar', 'baz'],
                    'A': [1, 2, 3],
                    'B': [4, 5, 6],
                    'C': [7, 8, 9]})
print(df)
   key  A  B  C
0  foo  1  4  7
1  bar  2  5  8
2  baz  3  6  9
#旋转DataFrame的逆运算是pandas.melt。当使用pandas.melt,我们必须指明哪些列是分组指标。
#下面使用key作为唯一的分组指标:
melted = pd.melt(df, ['key'])
print(melted)
   key variable  value
0  foo        A      1
1  bar        A      2
2  baz        A      3
3  foo        B      4
4  bar        B      5
5  baz        B      6
6  foo        C      7
7  bar        C      8
8  baz        C      9
#使用pivot,可以重塑回原来的样子
reshaped = melted.pivot('key', 'variable', 'value')
print(reshaped)
variable  A  B  C
key              
bar       2  5  8
baz       3  6  9
foo       1  4  7
data200=pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])
print(data200)
   key variable  value
0  foo        A      1
1  bar        A      2
2  baz        A      3
3  foo        B      4
4  bar        B      5
5  baz        B      6

上一篇 下一篇

猜你喜欢

热点阅读