LeetCode #978 Longest Turbulent
978 Longest Turbulent Subarray 最长湍流子数组
Description:
Given an integer array arr, return the length of a maximum size turbulent subarray of arr.
A subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
More formally, a subarray [arr[i], arr[i + 1], ..., arr[j]] of arr is said to be turbulent if and only if:
For i <= k < j:
arr[k] > arr[k + 1] when k is odd, and
arr[k] < arr[k + 1] when k is even.
Or, for i <= k < j:
arr[k] > arr[k + 1] when k is even, and
arr[k] < arr[k + 1] when k is odd.
Example:
Example 1:
Input: arr = [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: arr[1] > arr[2] < arr[3] > arr[4] < arr[5]
Example 2:
Input: arr = [4,8,12,16]
Output: 2
Example 3:
Input: arr = [100]
Output: 1
Constraints:
1 <= arr.length <= 4 * 10^4
0 <= arr[i] <= 10^9
题目描述:
当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:
若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
返回 A 的最大湍流子数组的长度。
示例 :
示例 1:
输入:[9,4,2,10,7,8,8,1,9]
输出:5
解释:(A[1] > A[2] < A[3] > A[4] < A[5])
示例 2:
输入:[4,8,12,16]
输出:2
示例 3:
输入:[100]
输出:1
提示:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
思路:
模拟
用两个指针分别表示递增长度和递减长度
如果单调递增令 up = down + 1, 且 down 置 1
如果单调递减令 down = up + 1, 且 up 置 1
否则如果相等令 down = up = 1 表示当前的湍流子数组长度为 1
result 取 up, down, result 的最大值
时间复杂度为 O(n), 空间复杂度为 O(1)
代码:
C++:
class Solution
{
public:
int maxTurbulenceSize(vector<int>& arr)
{
int n = arr.size(), up = 1, down = 1, result = 1;
for (int i = 1; i < n; i++)
{
if (arr[i] > arr[i - 1])
{
up = down + 1;
down = 1;
}
else if (arr[i] < arr[i - 1])
{
down = up + 1;
up = 1;
}
else up = down = 1;
result = max({ result, up, down });
}
return result;
}
};
Java:
class Solution {
public int maxTurbulenceSize(int[] arr) {
int n = arr.length, up = 1, down = 1, result = 1;
for (int i = 1; i < n; i++) {
if (arr[i] > arr[i - 1]) {
up = down + 1;
down = 1;
}
else if (arr[i] < arr[i - 1]) {
down = up + 1;
up = 1;
}
else up = down = 1;
result = Math.max( result, Math.max(up, down));
}
return result;
}
}
Python:
class Solution:
def maxTurbulenceSize(self, arr: List[int]) -> int:
n, up, down, result = len(arr), 1, 1, 1
for i in range(1, n):
if arr[i] > arr[i - 1]:
up, down = down + 1, 1
elif arr[i] < arr[i - 1]:
down, up = up + 1, 1
else:
up = down = 1
result = max(up, down, result)
return result