IIR 切比雪夫型模拟低通滤波器设计原理

2020-07-19  本文已影响0人  JeffreyLau

切比雪夫I型滤波器频域特性

filter_design_cbi_001.png

|H(j0)|^2 = \{^{1,N为奇数}_{1+\varepsilon,N为偶数}

切比雪夫I型滤波器设计步骤

步骤一:由通带截频\omega_p确定\omega_c

\omega_p=\omega_c

步骤二:由阻带衰减As确定\varepsilon :

        $\varepsilon = \sqrt{10^{0.1Ap - 1}}$

步骤三:由通带、阻带指标确定N :

N \ge \frac{arccosh(\frac{1}{\varepsilon}\sqrt{10^{0.1A_s} - 1})}{arccosh(\omega_s/\omega_h)}

步骤四:由模方|H(jw)|^2求模拟低通滤波器的极点

filter_design_cbi_002.png

步骤5:由极点确定系统函数H(s)

H_L(s) = \prod_{k=1}^N\frac{H(0)}{S-S_k} ,S_k = \sigma_k + j\omega_k,k=1,2,3 \ldots

filter_design_cbi_003.png

切比雪夫II型滤波器频域特性

filter_design_cbi_004.png

切比雪夫II型滤波器设计步骤

步骤一:由通带截频\omega_p确定\omega_c

\omega_p=\omega_c

步骤二:由阻带衰减As确定\varepsilon :

        $\varepsilon=\frac{1}{\sqrt(10^{0.1A_s} - 1)}$       

步骤三:由通带、阻带指标确定N :

N \ge \frac{arccosh(\frac{1}{\sqrt(10^{0.1A_s} - 1)})}{arccosh(\omega_s/\omega_h)}

步骤四:由模方|H(jw)|^2求模拟低通滤波器的极点

S_k = \sigma_k + j\omega_k,k=1,2,3 \ldots

步骤5:由极点确定系统函数H(s)

H_L(s) = \prod_{k=1}^N\frac{H(0)}{S-S_k}

使用matlab求模拟低通滤波器的系统函数以及频率响应

Wp=2*pi*1000;%将数字频率转换成模拟频率
Ws=2*pi*2000;%将数字频率转换成模拟频率
Ap=1;%最大通带衰耗
As=40; % %最小阻带衰耗
%求阶数和Wc
[N,Wc]=cheb1ord(Wp,Ws,Ap,As,'s'); %Computer analog filter order
fprintf('Order of the filter=%.0f\n',N)
%求分之和分母系数
[num,den] = cheby1(N,Ap,Wc,'s'); %Compute AF coefficients
disp('Numerator polynomial'); 
fprintf('%.4e\n',num);
disp('Denominator polynomial'); 
fprintf('%.4e\n',den);
% 求Wp和Ws两点对应的频率响应
omega=[Wp Ws]; 
h = freqs(num,den,omega); %Compute Ap and As of the AF
ap = -20*log10(abs(h(1)));% 将通带频率响应转换成衰耗值,
as = -20*log10(abs(h(2)));% 将阻带频率响应转换成衰耗值,

hp = abs(h(1));
hs = abs(h(2));

gain_p = 20*log10(abs(h(1))); 
gain_s = 20*log10(abs(h(2))); 

fprintf('Ap= %.4f\n',-20*log10(abs(h(1))));
fprintf('As= %.4f\n',-20*log10(abs(h(2))));

%求0~6000pi之间的频率响应
omega = [0: 200: 3000*2*pi];
h = freqs(num,den,omega); %Compute the frequency response of the AF
subplot(211);

plot(omega/(2*pi),abs(h),'LineWidth',3);%画出频率响应曲线
hold on;%在画完函数虚线之后保持曲线图
plot([0 Wp/(2*pi)],[hp hp],'r--'); %画两个虚线
plot([Wp/(2*pi) Wp/(2*pi)],[0 hp],'r--');

plot([0 Ws/(2*pi)],[hs hs],'r--'); %画两个虚线
plot([Ws/(2*pi) Ws/(2*pi)],[0 hs],'r--');

hold off;
xlabel('Frequency in Hz'); 
ylabel('H(jw)');

gain=20*log10(abs(h)); 
subplot(212);
plot(omega/(2*pi),gain,'LineWidth',3);
hold on;%在画完函数虚线之后保持曲线图
plot([0 Wp/(2*pi)],[gain_p gain_p],'r--'); %画两个虚线
plot([Wp/(2*pi) Wp/(2*pi)],[0 gain_p],'r--');

plot([0 Ws/(2*pi)],[gain_s gain_s],'r--'); %画两个虚线
plot([Ws/(2*pi) Ws/(2*pi)],[0 gain_s],'r--');

hold off;

xlabel('Frequency in Hz'); 
ylabel('Gain in dB');
Order of the filter=5 %5阶滤波器
Numerator polynomial
0.0000e+00
0.0000e+00
0.0000e+00
0.0000e+00
0.0000e+00
1.2028e+18
Denominator polynomial
1.0000e+00
5.8862e+03
6.6672e+07
2.4170e+11
9.0479e+14
1.2028e+18
Ap= 1.0000
As= 45.3060
num=[1.2028e+18];
den=[1.0000e+00 5.8862e+03 6.6672e+07 2.4170e+11 9.0479e+14 1.2028e+18];
subplot(211);
sys=tf(num,den);%求出系统的零极点
pzmap(sys,'r');%画出系统零极点
grid on
subplot(212);
omega = [0: 200: 3000*2*pi];
H=freqs(num,den,omega);%得到频率响应
plot(omega/(2*pi),abs(H),'LineWidth',3);%画出频率响应
xlabel('Frequency Hz');
title('Magnitude Respone');
filter_design_cbi_006.png
上一篇 下一篇

猜你喜欢

热点阅读