Python开发

【logging】Python多层级日志输出

2018-07-14  本文已影响0人  王南北丶

本文地址:https://www.jianshu.com/p/3be28b5d2ff8

1. 简介

在应用的开发过程中,我们常常需要去记录应用的状态,事件,结果。而Python最基础的Print很难满足我们的需求,这种情况下我们就需要使用python的另一个标准库:logging

这是一个专门用于记录日志的模块。相对于Print来说,logging提供了日志信息的分级,格式化,过滤等功能。如果在程序中定义了丰富而有条理的log信息,那么可以非常方便的去分析程序的运行状况,在有问题时也能够方便的去定位问题,分析问题。

以下是具体的一些应用场景。

执行的任务 这项任务的最佳工具
显示控制台输出 print()
报告在程序正常运行期间发生的事件 logging.info()或 logging.debug()
发出有关特定运行时事件的警告 logging.warning()
报告有关特定运行时事件的错误 抛出异常
报告错误但不抛出异常 logging.error(), logging.exception()或 logging.critical()

2. 基础用法

以下是一些logging最基础的使用方法,如果不需要深入的去定制log的话,那么只需要使用最基础的部分即可。

In [1]: import logging

In [2]: logging.info('hello world')

In [3]: logging.warning('good luck')
WARNING:root:good luck

可以看到,logging.info()的日志信息没有被输出,而logging.warning()的日志信息被输出了,这就是因为logging的日志信息分为几个不同的重要性级别,而默认输出的级别则是warning,也就是说,重要性大于等于warning的信息才会被输出。

以下是logging模块中信息的五个级别,重要性从上往下递增。

等级 什么时候使用
DEBUG 详细信息,通常仅在Debug时使用。
INFO 程序正常运行时输出的信息。
WARNING 表示有些预期之外的情况发生,或者在将来可能发生什么情况。程序依然能按照预期运行。
ERROR 因为一些严重的问题,程序的某些功能无法使用了。
CRITICAL 发生了严重的错误,程序已经无法运行。

我们也可以通过设置来设定输出日志的级别:

In [1]: import logging

In [2]: logging.basicConfig(level=logging.DEBUG)

In [3]: logging.info('hello world')
INFO:root:hello world

可以看到,在设定了level参数为logging.DEBUG后,logging.info()的日志信息就正常输出了。


2.1. basicConfig

logging.basicConfig(**kwargs)

通过basicConfig()方法可以为logging做一些简单的配置。此方法可以传递一些关键字参数。

注:需要注意的是,basicConfig()方法是一个一次性的方法,只能用来做简单的配置,多次的调用basicConfig()是无效的。


3. 模块化定制logging

在深度使用logging来定制日志信息之前,我们需要先来了解一下logging的结构。logging的主要逻辑结构主要由以下几个组件构成:

这四个组件是logging模块的基础,在基础用法中的使用方式,其实也是这四大组件的封装结果。

这四个组件的关系如下所示:

image.png

logger主要为外部提供使用的api接口,而每个logger下可以设置多个Handler,来将log信息输出到多个位置,而每一个Handler下又可以设置一个Formatter和多个Filter来定制输出的信息。


3.1. Logger

Logger这个对象主要有三个任务要做:

logging.getLogger(name=None)

首先,我们需要通过getLogger()方法来生成一个Logger,这个方法中有一个参数name,则是生成的Logger的名称,如果不传或者传入一个空值的话,Logger的名称默认为root。

In [1]: import logging

In [2]: logger = logging.getLogger('nanbei')

需要注意的是,只要在同一个解释器的进程中,那么相同的Logger名称,使用getLogger()方法将会指向同一个Logger对象。

而使用logger的一个好习惯,是生成一个模块级别的Logger对象:

In [1]: logger = logging.getLogger(__name__)

通过这种方式,我们可以让logger清楚的记录下事件发生的模块位置。

除此之外,logger对象是有层级结构的:

例如:

In [1]: import logging
# 生成一个名称为nanbei的Logger
In [2]: logger = logging.getLogger('nanbei')
# 生成一个StreamHandler,这个Handler可以将日志输出到console中
In [3]: sh = logging.StreamHandler()
# 生成一个Formatter对象,使输出日志时只显示Logger名称和日志信息
In [4]: fmt = logging.Formatter(fmt='%(name)s - %(message)s')
# 设置Formatter到StreamHandler中
In [5]: sh.setFormatter(fmt)
# 将Handler添加到Logger中
In [6]: logger.addHandler(sh)
# 生成一个nanbei的子Logger:nanbei.child
In [7]: child_logger = logging.getLogger('nanbei.child')
# 可以看到两个Logger输出的日志信息都使用了相同的日志格式
In [8]: logger.warning('hello')
nanbei - hello

In [9]: child_logger.warning('hello')
nanbei.child - hello

Logger对象中,主要提供了以下方法:

方法 描述
Logger.setLevel() 设置日志器将会处理的日志消息的最低输出级别
Logger.addHandler() 和 Logger.removeHandler() 为该logger对象添加、移除一个handler对象
Logger.addFilter() 和 Logger.removeFilter() 为该logger对象添加、移除一个filter对象
Logger.debug(),Logger.info(),Logger.warning(),Logger.error(),Logger.critical() 输出一条与方法名对应等级的日志
Logger.exception() 输出一条与Logger.error()类似的日志,包含异常信息
Logger.log() 可以传入一个明确的日志level参数来输出一条日志

3.2. Handler

Handler的作用主要是把log信息输出到我们希望的目标位置,其提供了如下的方法以供使用:

方法 描述
Handler.setLevel() 设置handler处理日志消息的最低级别
Handler.setFormatter() 为handler设置一个格式器对象
Handler.addFilter() 和 Handler.removeFilter() 为handler添加、删除一个过滤器对象

我们可以通过这几个方法,给每一个Handler设置一个Formatter和多个Filter,来定制不同的输出log信息的策略。

Handler本身是一个基类,不应该直接实例化使用,我们应该使用的是其多种多样的子类,每一个不同的子类可以将日志信息输出到不同的目标位置,以下是一些常用的Handler

Handler 描述
logging.StreamHandler 将日志消息发送到输出到Stream,如std.out, std.err或任何file-like对象。
logging.FileHandler 将日志消息发送到磁盘文件,默认情况下文件大小会无限增长
logging.handlers.RotatingFileHandler 将日志消息发送到磁盘文件,并支持日志文件按大小切割
logging.hanlders.TimedRotatingFileHandler 将日志消息发送到磁盘文件,并支持日志文件按时间切割
logging.handlers.HTTPHandler 将日志消息以GET或POST的方式发送给一个HTTP服务器
logging.handlers.SMTPHandler 将日志消息发送给一个指定的email地址
logging.NullHandler 该Handler实例会忽略error messages,通常被想使用logging的library开发者使用来避免'No handlers could be found for logger XXX'信息的出现。

3.3. Filter

Filter可以被HandlerLogger用来做比level分级更细粒度的、更复杂的过滤功能。

Filter是一个过滤器基类,它可以通过name参数,来使这个logger下的日志通过过滤。

class logging.Filter(name='')

比如,一个Filter实例化时传递的name参数值为A.B,那么该Filter实例将只允许名称为类似如下规则的Loggers产生的日志通过过滤:A.BA.B.CA.B.C.DA.B.D

而名称为A.BBB.A.BLoggers产生的日志则会被过滤掉。如果name的值为空字符串,则允许所有的日志事件通过过滤。

In [1]: import logging

In [2]: logger = logging.getLogger('nanbei')

In [3]: filt = logging.Filter(name='nanbei.a')

In [4]: sh = logging.StreamHandler()

In [5]: sh.setLevel(logging.DEBUG)

In [6]: sh.addFilter(filt)

In [7]: logger.addHandler(sh)

In [8]: logging.getLogger('nanbei.a.b').warning('i am nanbei.a.b')
i am nanbei.a.b

In [9]: logging.getLogger('nanbei.b.b').warning('i am nanbei.a.b')

可以看到,名称为nanbei.b.bLogger的日志没有被输出。


3.4. Formatter

Formater对象用于配置日志信息的最终顺序、结构和内容。

Formatter类的构造方法定义如下:

logging.Formatter.__init__(fmt=None, datefmt=None, style='%')

4. 使用字典配置Logger

可以看到使用logging内置的方法去配置Logger的话,会比较繁琐,特别是配置多个Logger的时候,写的代码会很多很杂乱。logging还提供了文件配置和字典配置两种方式,可以使代码更有条理,但由于文件配置的API比较老旧,有一些功能不能使用,所以这里我们只介绍字典配置方式。

从字典配置主要使用以下方法:

logging.config.dictConfig(config)

此方法通过传入一个字典来进行配置,字典中可包含的key如以下所示:

在这里并没有完全列出每一个对象所需的key,但熟悉模块化定制logger之后,其构造所需的参数与字典构造基本是一致的,以下有一个使用简单的例子:

import logging
import logging.config
import os

path = os.path.abspath(__file__)
BASE_DIR = os.path.dirname(os.path.dirname(path))

debug_flag = True

# 给过滤器使用的判断
class RequireDebugTrue(logging.Filter):
    # 实现filter方法
    def filter(self, record):
        return debug_flag

logging_config = {
    #必选项,其值是一个整数值,表示配置格式的版本,当前唯一可用的值就是1
    'version': 1,
    # 是否禁用现有的记录器
    'disable_existing_loggers': False,

    # 过滤器
    'filters': {
        'require_debug_true': {
            '()': RequireDebugTrue,   #在开发环境,我设置DEBUG为True;在客户端,我设置DEBUG为False。从而控制是否需要使用某些处理器。
        }
    },

    #日志格式集合
    'formatters': {
        'simple': {
            'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        },
    },

    # 处理器集合
    'handlers': {
        # 输出到控制台
        'console': {
            'level': 'DEBUG',  # 输出信息的最低级别
            'class': 'logging.StreamHandler',
            'formatter': 'simple',  # 使用standard格式
            'filters': ['require_debug_true', ]
        },
        # 输出到文件
        'log': {
            'level': 'DEBUG',
            'class': 'logging.handlers.RotatingFileHandler',
            'formatter': 'simple',
            'filename': os.path.join(BASE_DIR, 'debug.log'),  # 输出位置
            'maxBytes': 1024 * 1024 * 5,  # 文件大小 5M
            'backupCount': 5,  # 备份份数
            'encoding': 'utf8',  # 文件编码
        },
    },

    # 日志管理器集合
    'loggers':{
        'root': {
            'handlers': ['console','log'],
            'level': 'DEBUG',
            'propagate': True,  # 是否传递给父记录器
        },
        'simple': {
            'handlers': ['console','log'],
            'level': 'WARN',
            'propagate': True,  # 是否传递给父记录器,
        }
    }
}

logging.config.dictConfig(logging_config)
logger = logging.getLogger('root')

# 尝试写入不同消息级别的日志信息
logger.debug("debug message")
logger.info("info message")
logger.warn("warn message")
logger.error("error message")
logger.critical("critical message")
上一篇 下一篇

猜你喜欢

热点阅读