Python进行高效的行计算

2019-05-11  本文已影响0人  Crazycabbage_

欢迎来我的个人Blog获得更好的阅读体验。

太长懒得看版

使用map函数进行行计算,加上np.column_stack 进行合并最快

假如有这么一组数据

df = pd.DataFrame({"one":list("AABBCCDD"),
                   "two":[1,1,2,2,3,3,4,4],
                   "three":[9,9,8,8,7,7,6,6]})
Snipaste_2018-10-23_13-51-52.png

现在我假如要对two和three进行这么一个函数计算

def cal_func(a,b):
    return math.sqrt(a**2+b**2)

然后生成一列新的叫作four这么一列。

于是乎现在有两种方法:

那么到底那种更快呢?

实践是检验真理的唯一标准

1.使用apply方法

%%time
df["four"] = df.apply(lambda x:cal_func(x.two, x.three), axis=1)
print(df)
   one  two  three       new
0   A    1      9  9.055385
1   A    1      9  9.055385
2   B    2      8  8.246211
3   B    2      8  8.246211
4   C    3      7  7.615773
5   C    3      7  7.615773
6   D    4      6  7.211103
7   D    4      6  7.211103
CPU times: user 13.1 ms, sys: 0 ns, total: 13.1 ms
Wall time: 13.1 ms

我们看到,花了13.1ms

2.使用map方法

首先转成np.array,df_array = df.values

然后使用map方法

这里为了测试合并矩阵,还选用了不同的合并方法进行对比,分别为:

2.1 np.insert

%%time
np.insert(df_array, -1, values=list(map(lambda x:cal_func(x[1], x[2]), df_array)), axis=1)    
CPU times: user 235 µs, sys: 0 ns, total: 235 µs
Wall time: 247 µs
array([['A', 1, 9.055385138137417, 9],
       ['A', 1, 9.055385138137417, 9],
       ['B', 2, 8.246211251235321, 8],
       ['B', 2, 8.246211251235321, 8],
       ['C', 3, 7.615773105863909, 7],
       ['C', 3, 7.615773105863909, 7],
       ['D', 4, 7.211102550927978, 6],
       ['D', 4, 7.211102550927978, 6]], dtype=object)

2.2 np.column_stack

%%time
np.column_stack((df_array, list(map(lambda x:cal_func(x[1], x[2]), df_array))))
CPU times: user 145 µs, sys: 0 ns, total: 145 µs
Wall time: 157 µs
array([['A', 1, 9, 9.055385138137417],
       ['A', 1, 9, 9.055385138137417],
       ['B', 2, 8, 8.246211251235321],
       ['B', 2, 8, 8.246211251235321],
       ['C', 3, 7, 7.615773105863909],
       ['C', 3, 7, 7.615773105863909],
       ['D', 4, 6, 7.211102550927978],
       ['D', 4, 6, 7.211102550927978]], dtype=object)

2.3 np.c_

%%time
np.c_[df_array, list(map(lambda x:cal_func(x[1], x[2]), df_array))]
CPU times: user 279 µs, sys: 0 ns, total: 279 µs
Wall time: 290 µs
array([['A', 1, 9, 9.055385138137417],
       ['A', 1, 9, 9.055385138137417],
       ['B', 2, 8, 8.246211251235321],
       ['B', 2, 8, 8.246211251235321],
       ['C', 3, 7, 7.615773105863909],
       ['C', 3, 7, 7.615773105863909],
       ['D', 4, 6, 7.211102550927978],
       ['D', 4, 6, 7.211102550927978]], dtype=object)

2.4 list append

df_list = df_array.tolist()
for idx, value in enumerate(map(lambda x:cal_func(x[1], x[2]), df_list)):
    df_list[idx].append(value)
print(df_list)
[['A', 1, 9, 9.055385138137417], ['A', 1, 9, 9.055385138137417], ['B', 2, 8, 8.246211251235321], ['B', 2, 8, 8.246211251235321], ['C', 3, 7, 7.615773105863909], ['C', 3, 7, 7.615773105863909], ['D', 4, 6, 7.211102550927978], ['D', 4, 6, 7.211102550927978]]
CPU times: user 220 µs, sys: 0 ns, total: 220 µs
Wall time: 233 µs

对比

方法 时间
df.apply 13.1ms
np.insert, map 247 µs
np.column_stack, map 157 µs
np.c_, map 290 µs
list.append, map 233 µs

最后得出, np.column_stack + map的方法最快

上一篇 下一篇

猜你喜欢

热点阅读