跳表:为什么 Redis 一定要用跳表来实现有序集合?
跳表:为什么 Redis 一定要用跳表来实现有序集合?
上几篇主要是学习二分查找算法,但是二分查找底层依赖的是数组随机访问的特性,所以只能用数组来实现。如果数据存储在链表中,就没办法使用二分查找了吗?
此时跳表出现了,跳表(Skip list)
实际上就是在链表的基础上改造生成的。
跳表是一种各方面性能都比较优秀的 动态数据结构,可以支持快速的插入、删除、查找操作,写起来也不复杂,甚至可以替代 红黑树??。
Redis 中的有序集合就是用跳表来实现的。那 Redis 为什么会选择用跳表来实现有序集合呢?
一、如何理解跳表?
对于单链表来说,我们查找某个数据,只能从头到尾遍历链表,此时时间复杂度是 ○(n)。
单链表那么怎么提高单链表的查找效率呢?看下图,对链表建立一级 索引
,每两个节点提取一个结点到上一级,被抽出来的这级叫做 索引
或 索引层
。
开发中经常会用到一种处理方式,hashmap 中存储的值类型是一个 list,这里就可以把索引当做 hashmap 中的键,将每 2 个结点看成每个键对应的值 list。
所以要找到13,就不需要将16前的结点全遍历一遍,只需要遍历索引,找到13,然后发现下一个结点是17,那么16一定是在 [13,17] 之间的,此时在13位置下降到原始链表层,找到16,加上一层索引后,查找一个结点需要遍历的结点个数减少了,也就是说查找效率提高了
那么我们再加一级索引呢?
跟前面建立一级索引的方式相似,我们在第一级索引的基础上,每两个结点就抽出一个结点到第二级索引。此时再查找16,只需要遍历 6 个结点了,需要遍历的结点数量又减少了。
当结点数量多的时候,这种添加索引的方式,会使查询效率提高的非常明显、
image
这种链表加多级索引的结构,就是跳表。
二、用跳表查询到底有多快
在一个单链表中,查询某个数据的时间复杂度是 ○(n),那在一个具有多级索引的跳表中,查询某个数据的时间复杂度是多少呢?
按照上面的示例,每两个节点就抽出一个一级索引,每两个一级索引又抽出一个二级索引,所以第一级索引的结点个数大约就是 n/2
,第二级索引的结点个数就是 n/4
,第 k 级索引的结点个数就是 n/2^k
。
假设一共建立了 h 级索引,最高级的索引有两个节点(如果最高级索引只有一个结点,那么这一级索引起不到判断区间的作用,那么是没什么意义的),所以有:
时间复杂度的分析 每级遍历多少个结点根据上图得知,每级遍历 3 个结点即可,而跳表的高度为 h ,所以每次查找一个结点时,需要遍历的结点数为 3*跳表高度
,所以忽略低阶项和系数后的时间复杂度就是 ○(㏒n)
其实此时就相当于基于单链表实现了二分查找。但是这种查询效率的提升,由于建立了很多级索引,会不会很浪费内存呢?
三、跳表是不是很浪费内存?
来分析一下跳表的空间复杂度。
每层索引结点数 空间复杂度所以如果将包含 n 个结点的单链表构造成跳表,我们需要额外再用接近 n 个结点的存储空间,那怎么才能降低索引占用的内存空间呢?
前面是每两个结点抽一个结点到上级索引,如果我们每三个,或每五个结点,抽一个结点到上级索引,是不是就不用那么多索引结点了呢?
每三个结点抽取一个上级索引计算空间复杂度的过程与前面的一致,尽管最后空间复杂度依然是 ○(n),但我们知道,使用大○表示法忽略的低阶项或系数,实际上同样会产生影响,只不过我们为了关注高阶项而将它们忽略。
空间复杂度实际上,在实际开发中,我们不需要太在意索引占据的额外空间,在学习数据结构与算法时,我们习惯的将待处理数据看成整数,但是实际开发中,原始链表中存储的很可能是很大的对象,而索引结点只需要存储关键值(用来比较的值)和几个指针(找到下级索引的指针),并不需要存储原始链表中完整的对象,所以当对象比索引结点大很多时,那索引占用的额外空间就可以忽略了。
四、高效的动态插入和删除
跳表这个动态数据结构,不仅支持查找操作,还支持动态的插入、删除操作,而且插入、删除操作的时间复杂度也是 ○(㏒n)。
对于单纯的单链表,需要遍历每个结点来找到插入的位置。但是对于跳表来说,因为其查找某个结点的时间复杂度是 ○(㏒n),所以这里查找某个数据应该插入的位置,时间复杂度也是 ○(㏒n)。
插入操作那么删除操作呢?
五、跳表索引动态更新
当我们不停的往跳表中插入数据时,如果我们不更新索引,就可能出现某 2 个索引结点之间数据非常多的情况。极端情况下,跳表会退化成单链表。
image作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平滑,也就是说如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。
跳表是通过随机函数来维护前面提到的 平衡性
。
我们往跳表中插入数据的时候,可以选择同时将这个数据插入到第几级索引中,比如随机函数生成了值 K,那我们就将这个结点添加到第一级到第 K 级这 K 级索引中。
image随机函数可以保证跳表的索引大小和数据大小的平衡性,不至于性能过度退化。
跳表的实现有点复杂,并且跳表的实现并不是这篇的重点。主要是学习思路。