2022-07-12 Seurat复习

2022-07-12  本文已影响0人  Shift_shift

基本流程:数据导入,QC去除低质量细胞,归一化,由于矩阵过于稀疏所以选取top1000~2000,对每个基因进行zscore,线性降维和非线性降维,聚类(基于线性降维的结果进行KNN,SNN)

rm( list = ls())

library(dplyr)

library(Seurat)

library(patchwork)

# Load the PBMC dataset

pbmc.data <- Read10X(data.dir = "F:/class/test/filtered_gene_bc_matrices/hg19/")

#### Method1对于不规范数据

dir.10x = 'F:/class/test/filtered_gene_bc_matrices/hg19/'

#首先处理genelist文件,考虑到只需要第二行

genes <- read.table(paste0(dir.10x, 'genes.tsv'), stringsAsFactors=F, header=F)$V2

genes <- make.unique(genes, sep = '.')#将重复的以一个点分开

#barcode是当列矩阵

barcodes <- readLines(paste0(dir.10x, 'barcodes.tsv'))

mtx <- Matrix::readMM(paste0(dir.10x, 'matrix.mtx'))

mtx <- as(mtx, 'dgCMatrix')#格式转换

colnames(mtx) = barcodes#赋予列名

rownames(mtx) = genes#赋予行名

pbmc <- CreateSeuratObject(counts = mtx, project = "pbmc3k",min.cells = 3, min.features = 200)

#### Method2

# Initialize the Seurat object with the raw (non-normalized data).

pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)

pbmc

# Lets examine a few genes in the first thirty cells

pbmc.data[c("CD3D", "TCL1A", "MS4A1"), 1:30]

dense.size <- object.size(as.matrix(pbmc.data))

dense.size

sparse.size <- object.size(pbmc.data)

sparse.size

dense.size/sparse.size

#######QC计算线粒体比例,线粒体比例高是死细胞,过滤掉线粒体高的细胞

# The [[ operator can add columns to object metadata. This is a great place to stash QC stats

pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")

# Visualize QC metrics as a violin plot

#三张图每个细胞检测到的基因数量,每个细胞检测到的count数量,每个细胞检测到的线粒体比例

VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

# FeatureScatter is typically used to visualize feature-feature relationships, but can be used

# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.

#count和线粒体基因的的关系

plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")

#count和基因总数的关系

plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")

plot1 + plot2

#根据数据特点选择适合的过滤方式

pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)

######NormalizeData去除测序深度对数据分析的影响

#将每一个细胞的count先归一化到10000,再对每一个基因表达值log

pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)

#pbmc <- NormalizeData(pbmc)

##########Feature selection 1500,3000

pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)

# Identify the 10 most highly variable genes

top10 <- head(VariableFeatures(pbmc), 10)

top10

# plot variable features with and without labels

plot1 <- VariableFeaturePlot(pbmc)

plot2 <- LabelPoints(plot = plot1, points = top10, repel=TRUE)

plot2

#FindVariableFeatures选择基因的原理平均表达量,一个细胞的平均表达量在不同的细胞之间的方差有多大,方差越大就是细胞类群分开的依据

plot1 + plot2

all.genes <- rownames(pbmc)

pbmc <- ScaleData(pbmc, features = all.genes)#本质还是zscore,每一个基因在所有细胞中平均细胞表达量为0,方差为1

########降维Reduction

pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))

# Examine and visualize PCA results a few different ways

DimPlot(pbmc, reduction = "pca")#可视化

# FeaturePlot(pbmc, reduction = 'pca', features = c('CD79A', 'CD14', 'FCGR3A', 'CD4', 'CST3', 'PPBP'))

# FeaturePlot(pbmc, reduction = 'pca', features = c('nCount_RNA', 'nFeature_RNA'))

# loadings_sorted = dplyr::arrange(as.data.frame(loadings), desc(PC_1))

# DimHeatmap(pbmc, dims = 1:2, cells = 200, balanced = TRUE)

# print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)

# VizDimLoadings(pbmc, dims = 1:2, reduction = "pca")

# DimHeatmap(pbmc, dims = 1, cells = 500, balanced = TRUE)

# DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)

ElbowPlot(pbmc,ndims = 50)#做了50个pca可视化,纵轴奇异值

# NOTE: This process can take a long time for big datasets, comment out for expediency. More

# approximate techniques such as those implemented in ElbowPlot() can be used to reduce

# computation time

#pbmc <- JackStraw(pbmc, num.replicate = 100)

#pbmc <- ScoreJackStraw(pbmc, dims = 1:20)

#JackStrawPlot(pbmc, dims = 1:15)

#ElbowPlot(pbmc)

# Look at cluster IDs of the first 5 cells

#head(Idents(pbmc), 5)

# If you haven't installed UMAP, you can do so via reticulate::py_install(packages =

# 'umap-learn')

#选取前10的特征进行非线性降维,两种方式umap,tsne,但是umap更好可以更真实的表现群与群的真实距离

pbmc <- RunUMAP(pbmc, dims = 1:10)

FeaturePlot(pbmc, features = c('FCGR3A', 'CD14'), reduction = 'umap')

#DimPlot(pbmc, reduction = "umap")

# note that you can set `label = TRUE` or use the LabelClusters function to help label

#######cluster分群

pbmc <- FindNeighbors(pbmc, dims = 1:10)# louvain cluster, graph based

pbmc <- FindClusters(pbmc, resolution = 0.5)#resolution越大群越多

DimPlot(pbmc, reduction = "umap", group.by = 'seurat_clusters', label=T)

#根据maker对细胞进行细胞注释

FeaturePlot(pbmc, features = c("MS4A1", "TYROBP", "CD14",'FCGR3A', "FCER1A",

                              "CCR7", "IL7R", "PPBP", "CD8A"))

new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono",

                    "NK", "DC", "Platelet")

names(new.cluster.ids) <- levels(pbmc)

pbmc <- RenameIdents(pbmc, new.cluster.ids)

#重新定义的亚群

DimPlot(pbmc, reduction = "umap", label=T)

# ############################################################################################################

# ## DE analysis有很多小群无法判断时

# ############################################################################################################

#利用差异基因的方式,来看所有群表达怎样的marker,来确定每一个群表达什么样的基因,再去推断那个群可能是什么样的细胞亚群

pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)#都所有亚群依次求差异基因

pbmc.markers %>% group_by(cluster) %>% slice_max(n = 2, order_by = avg_log2FC)#每个cluster top2的差异基因看

CD4.mem.DEGS <- FindMarkers(pbmc, ident.1 = 'Memory CD4 T', ident.2 = 'Naive CD4 T', min.pct = 0.25)#要计算哪一群的差异基因,要计算的差异基因对照的是什么

#test.use计算方式

# ############################################################################################################

# ## gene signature analysis

# ############################################################################################################

exhaustion_genes = list(c('PDCD1','CD160','FASLG','CD244','LAG3','TNFRSF1B','CCR5','CCL3',

                          'CCL4','CXCL10','CTLA4','LGALS1','LGALS3','PTPN13','RGS16','ISG20',

                          'MX1','IRF4','EOMES','PBX3','NFATC1','NR4A2','CKS2','GAS2','ENTPD1','CA2'))

pbmc = Seurat::AddModuleScore(pbmc, features = exhaustion_genes, name='exhaustion.score')

FeaturePlot(pbmc, features = 'exhaustion.score1', reduction = 'umap')

VlnPlot(pbmc,features = 'exhaustion.score1', group.by = 'seurat_clusters')

上一篇 下一篇

猜你喜欢

热点阅读