随机森林03
一、案例随机森林调参
1.1、导入库
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
1.2、导入数据集,探索数据
data = load_breast_cancer()
data
data.data.shape
data.target
#可以看到,乳腺癌数据集有569条记录,30个特征,
#单看维度虽然不算太高,但是样本量非常少。过拟合的情况可能存
1.3、进行一次简单的建模,看看模型本身在数据集上的效果
rfc = RandomForestClassifier(n_estimators=100,random_state=90)
score_pre = cross_val_score(rfc,data.data,data.target,cv=10).mean()
score_pre
#这里可以看到,随机森林在乳腺癌数据上的表现本就还不错,在现实数据集上,
#基本上不可能什么都不调就看到95%以
#上的准确率
1.4、随机森林调整的第一步:无论如何先来调n_estimators
"""
在这里我们选择学习曲线,可以使用网格搜索吗?可以,但是只有学习曲线,才能看见趋势
我个人的倾向是,要看见n_estimators在什么取值开始变得平稳,是否一直推动模型整体准确率的上升等信息
第一次的学习曲线,可以先用来帮助我们划定范围,我们取每十个数作为一个阶段,来观察n_estimators的变化如何
引起模型整体准确率的变化
"""
#####【TIME WARNING: 30 seconds】#####
scorel = []
for i in range(0,200,10):
rfc = RandomForestClassifier(n_estimators=i+1,
n_jobs=-1,
random_state=90)
score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
scorel.append(score)
print(max(scorel),(scorel.index(max(scorel))*10)+1)
plt.figure(figsize=[20,5])
plt.plot(range(1,201,10),scorel)
plt.show()
#list.index([object])
#返回这个object在列表list中的索引
1.5、在确定好的范围内,进一步细化学习曲线
corel = []
for i in range(35,45):
rfc = RandomForestClassifier(n_estimators=i,
n_jobs=-1,
random_state=90)
score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
scorel.append(score)
print(max(scorel),([*range(35,45)][scorel.index(max(scorel))]))
plt.figure(figszie=[20,5])
plt.plot(rang(35,45),scorel)
plt.show()
调整n_estimators的效果显著,模型的准确率立刻上升了0.005。接下来就进入网格搜索,我们将使用网格搜索对
参数一个个进行调整。为什么我们不同时调整多个参数呢?原因有两个:1)同时调整多个参数会运行非常缓慢,
在课堂上我们没有这么多的时间。2)同时调整多个参数,会让我们无法理解参数的组合是怎么得来的,所以即便
网格搜索调出来的结果不好,我们也不知道从哪里去改。在这里,为了使用复杂度-泛化误差方法(方差-偏差方
法),我们对参数进行一个个地调整。
1.6 为网格搜索做准备,书写网格搜索的参数
"""
有一些参数是没有参照的,很难说清一个范围,这种情况下我们使用学习曲线,看趋势
从曲线跑出的结果中选取一个更小的区间,再跑曲线
Tsai Tsai
菜菜的sklearn课堂直播间: https://live.bilibili.com/12582510 sklearn专题第二期:随机森林
param_grid = {'n_estimators':np.arange(0, 200, 10)}
param_grid = {'max_depth':np.arange(1, 20, 1)}
param_grid = {'max_leaf_nodes':np.arange(25,50,1)}
对于大型数据集,可以尝试从1000来构建,先输入1000,每100个叶子一个区间,再逐渐缩小范围
有一些参数是可以找到一个范围的,或者说我们知道他们的取值和随着他们的取值,模型的整体准确率会如何变化,这
样的参数我们就可以直接跑网格搜索
param_grid = {'criterion':['gini', 'entropy']}
param_grid = {'min_samples_split':np.arange(2, 2+20, 1)}
param_grid = {'min_samples_leaf':np.arange(1, 1+10, 1)}
param_grid = {'max_features':np.arange(5,30,1)}
"""
1.7、 开始按照参数对模型整体准确率的影响程度进行调参,首先调整max_depth
#调整
#调整max_depth
param_grid = {'max_depth':np.arange(1, 20, 1)}
# 一般根据数据的大小来进行一个试探,乳腺癌数据很小,所以可以采用1~10,或者1~20这样的试探
# 但对于像digit recognition那样的大型数据来说,我们应该尝试30~50层深度(或许还不足够
# 更应该画出学习曲线,来观察深度对模型的影响
rfc = RandomForestClassifier(n_estimators=39
,random_state=90
)
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.date,data.target)
GS.best_params_
GS.best_score_
image.png
在这里,我们注意到,将max_depth设置为有限之后,模型的准网格搜索返回了max_features的最小值,可见max_features升高之后,模型的准确率降低了。这说明,我们把模
型往右推,模型的泛化误差增加了。前面用max_depth往左推,现在用max_features往右推,泛化误差都增加,
这说明模型本身已经处于泛化误差最低点,已经达到了模型的预测上限,没有参数可以左右的部分了。剩下的那些
误差,是噪声决定的,已经没有方差和偏差的舞台了。
如果是现实案例,我们到这一步其实就可以停下了,因为复杂度和泛化误差的关系已经告诉我们,模型不能再进步
了。调参和训练模型都需要很长的时间,明知道模型不能进步了还继续调整,不是一个有效率的做法。如果我们希
望模型更进一步,我们会选择更换算法,或者更换做数据预处理的方式。但是在课上,出于练习和探索的目的,我
们继续调整我们的参数,让大家观察一下模型的变化,看看我们预测得是否正确。
依然按照参数对模型整体准确率的影响程度进行调参。确率下降了。限制
1.9、调整min_samples_leaf
#调整min_samples_leaf
param_grid={'min_samples_leaf':np.arange(1, 1+10, 1)}
#对于min_samples_split和min_samples_leaf,一般是从他们的最小值开始向上增加10或20
#面对高维度高样本量数据,如果不放心,也可以直接+50,对于大型数据,可能需要200~300的范围
#如果调整的时候发现准确率无论如何都上不来,那可以放心大胆调一个很大的数据,大力限制模型的复杂度
rfc = RandomForestClassifier(n_estimators=39
,random_state=90
)
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)
GS.best_params_
GS.best_score_
可以看见,网格搜索返回了min_samples_leaf的最小值,并且模型整体的准确率还降低了,这和max_depth的情
况一致,参数把模型向左推,但是模型的泛化误差上升了。在这种情况下,我们显然是不要把这个参数设置起来
的,就让它默认就好了
1.10、不懈努力,继续尝试min_samples_split
param_grid={'min_samples_split':np.arange(2, 2+20, 1)}
rfc = RandomForestClassifier(n_estimators=39
,random_state=90
)
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)
GS.best_params_
GS.best_score_
和min_samples_leaf一样的结果,返回最小值并且模型整体的准确率降低了。
1.11、最后尝试一下criterion
#调整Criterion
param_grid = {'criterion':['gini', 'entropy']}
rfc = RandomForestClassifier(n_estimators=39
,random_state=90
)
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)
GS.best_params_
GS.best_score_
1.12、调整完毕,总结出模型的最佳参数
rfc = RandomForestClassifier(n_estimators=39,random_state=90)
score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
score
score - score_pre
在整个调参过程之中,我们首先调整了n_estimators(无论如何都请先走这一步),然后调整max_depth,通过
max_depth产生的结果,来判断模型位于复杂度-泛化误差图像的哪一边,从而选择我们应该调整的参数和调参的
方向。如果感到困惑,也可以画很多学习曲线来观察参数会如何影响我们的准确率,选取学习曲线中单调的部分来
放大研究(如同我们对n_estimators做的)。学习曲线的拐点也许就是我们一直在追求的,最佳复杂度对应的泛化
误差最低点(也是方差和偏差的平衡点)。
网格搜索也可以一起调整多个参数,大家只要有时间,可以自己跑一下,看看网格搜索会给我们怎样的结果,有时
候,它的结果比我们的好,有时候,我们手动调整的结果会比较好。当然了,我们的乳腺癌数据集非常完美,所以
只需要调n_estimators一个参数就达到了随机森林在这个数据集上表现得极限。在我们上周使用的泰坦尼克号案例
的数据中,我们使用同样的方法调出了如下的参数组合。
rfc = RandomForestClassifier(n_estimators=68
,random_state=90
,criterion="gini"
,min_samples_split=8
,min_samples_leaf=1
,max_depth=12
,max_features=2
,max_leaf_nodes=36
)