dpvs学习笔记: 5 fullnat 完整流程及syn-pro

2018-11-05  本文已影响222人  董泽润

fullnat介绍

相比普通的 nat, 大部分公司都使用 fullnat, 对网段没有任何要求,也不需要配置路由。


fullnat

原理是在流量进入和返回时都做 dnat 和 snat. 而且 fullnat 性能扩展性非常好。如图所示,rs 是看不到真正 client ip 的,所有的请求都来自 lb. 这是 fullnat 缺点,通过安装 toa 模块来解决。

synproxy介绍

DDOS 攻击常见的就是 syn flood, 利用三次握手原理,只发送 syn 包,这时内核协义栈就会分配本地内存,当海量攻击流量生成时无法处理正常流量。也就是说如果能在第一次握手时挡住攻击流量就可以。


syn proxy原理

如上图所示,syn proxy 正常请求有四个阶段:

  1. client 发送 syn, LB 代理了第一次握次,不转发给 rs. LB 返回 ack 包时,seq 由 syn cookie 算法生成,并且将 win 设置为 0,不允许在握手阶段携带数据。由此得知不支持 tcp fast open
  2. 当 client 返回 ack 时,反解 seq, 如果和 cookie 算法匹配,那么就是正常流量。此时 LB 与后端 rs 开启三次所握手,并透传 win size. 由于经过 LB 代理,还需要记录 seq 差值 delta
  3. 数据交互通信,lb 除了正常的 full-nat 工作,还要补偿 seq delta
  4. 连接关闭,正常清理

ipv4_rcv 接收 client syn 请求

前文说到 ipv4_rcv 接收请求,最后调用 hook

INET_HOOK(INET_HOOK_PRE_ROUTING, mbuf, port, NULL, ipv4_rcv_fin)
int INET_HOOK(unsigned int hook, struct rte_mbuf *mbuf,
        struct netif_port *in, struct netif_port *out,
        int (*okfn)(struct rte_mbuf *mbuf))
{
    struct list_head *hook_list;
    struct inet_hook_ops *ops;
    struct inet_hook_state state;
    int verdict = INET_ACCEPT;

    state.hook = hook;
    hook_list = &inet_hooks[hook];

#ifdef CONFIG_DPVS_IPV4_INET_HOOK
    rte_rwlock_read_lock(&inet_hook_lock);
#endif

    ops = list_entry(hook_list, struct inet_hook_ops, list);

    if (!list_empty(hook_list)) {
        verdict = INET_ACCEPT;
        list_for_each_entry_continue(ops, hook_list, list) {
repeat:
            verdict = ops->hook(ops->priv, mbuf, &state);
            if (verdict != INET_ACCEPT) {
                if (verdict == INET_REPEAT)
                    goto repeat;
                break;
            }
        }
    }

#ifdef CONFIG_DPVS_IPV4_INET_HOOK
    rte_rwlock_read_unlock(&inet_hook_lock);
#endif

    if (verdict == INET_ACCEPT || verdict == INET_STOP) {
        return okfn(mbuf);
    } else if (verdict == INET_DROP) {
        rte_pktmbuf_free(mbuf);
        return EDPVS_DROP;
    } else { /* INET_STOLEN */ // 比如 synproxy 第一步处理
        return EDPVS_OK;
    }
}

这个 HOOK 会执行 INET_HOOK_PRE_ROUTING 注册的回调函数:dp_vs_pre_routingdp_vs_in, 但不是所有情况都会全部执行。当新连接请求时,dp_vs_pre_routing 会返回 INET_STOLEN,也就是说 dp_vs_in 并不会执行,并且 INET_HOOK 传入的回调函数 ipv4_rcv_fin 也不会执行。

static int dp_vs_pre_routing(void *priv, struct rte_mbuf *mbuf,
                    const struct inet_hook_state *state)
{
   ...
    /* Synproxy: defence synflood */
    if (IPPROTO_TCP == iph.proto) {
        int v = INET_ACCEPT;
        if (0 == dp_vs_synproxy_syn_rcv(af, mbuf, &iph, &v))
            return v;
    }

    return INET_ACCEPT;
}

这是 dp_vs_pre_routing 函数体,忽略上半部份,直接看 dp_vs_synproxy_syn_rcv 的实现

int dp_vs_synproxy_syn_rcv(int af, struct rte_mbuf *mbuf,
        const struct dp_vs_iphdr *iph, int *verdict)
{
    int ret;
    struct dp_vs_service *svc = NULL;
    struct tcphdr *th, _tcph;
    struct dp_vs_synproxy_opt tcp_opt;
    struct netif_port *dev;
    struct ether_hdr *eth;
    struct ether_addr ethaddr;

    th = mbuf_header_pointer(mbuf, iph->len, sizeof(_tcph), &_tcph);
    if (unlikely(NULL == th))
        goto syn_rcv_out;
    // 第一次握手只有 syn 包,并有访问的 svc 开启了 syn proxy防护
    if (th->syn && !th->ack && !th->rst && !th->fin &&
            (svc = dp_vs_service_lookup(af, iph->proto, 
                                        &iph->daddr, th->dest, 0, NULL, NULL)) &&
            (svc->flags & DP_VS_SVC_F_SYNPROXY)) {
        /* if service's weight is zero (non-active realserver),
         * do noting and drop the packet */
        // 如果后端服务 svc 权重为 0 ,那么也没可用后端
        if (svc->weight == 0) {
            dp_vs_estats_inc(SYNPROXY_NO_DEST);
            dp_vs_service_put(svc);
            goto syn_rcv_out;
        }

        dp_vs_service_put(svc);

        /* drop packet from blacklist */ // 如果在黑名单里,那么退出
        if (dp_vs_blklst_lookup(iph->proto, &iph->daddr, th->dest, &iph->saddr)) {
            goto syn_rcv_out;
        }

    } else {
        if (svc)
            dp_vs_service_put(svc);
        return 1;
    }

    /* mbuf will be reused and ether header will be set.
     * FIXME: to support non-ether packets. */
    if (mbuf->l2_len != sizeof(struct ether_hdr))
        goto syn_rcv_out;

    /* update statistics */
    dp_vs_estats_inc(SYNPROXY_SYN_CNT);

    /* set tx offload flags */
    assert(mbuf->port <= NETIF_MAX_PORTS);
    dev = netif_port_get(mbuf->port);
    if (unlikely(!dev)) {
        RTE_LOG(ERR, IPVS, "%s: device eth%d not found\n",
                __func__, mbuf->port);
        goto syn_rcv_out;
    }
    if (likely(dev && (dev->flag & NETIF_PORT_FLAG_TX_TCP_CSUM_OFFLOAD)))
        mbuf->ol_flags |= (PKT_TX_TCP_CKSUM | PKT_TX_IP_CKSUM | PKT_TX_IPV4);

    /* reuse mbuf */
    syn_proxy_reuse_mbuf(af, mbuf, &tcp_opt);

    /* set L2 header and send the packet out
     * It is noted that "ipv4_xmit" should not used here,
     * because mbuf is reused. */
    eth = (struct ether_hdr *)rte_pktmbuf_prepend(mbuf, mbuf->l2_len);
    if (unlikely(!eth)) {
        RTE_LOG(ERR, IPVS, "%s: no memory\n", __func__);
        goto syn_rcv_out;
    }
    memcpy(&ethaddr, &eth->s_addr, sizeof(struct ether_addr));
    memcpy(&eth->s_addr, &eth->d_addr, sizeof(struct ether_addr));
    memcpy(&eth->d_addr, &ethaddr, sizeof(struct ether_addr));

    if (unlikely(EDPVS_OK != (ret = netif_xmit(mbuf, dev)))) {
        RTE_LOG(ERR, IPVS, "%s: netif_xmit failed -- %s\n",
                __func__, dpvs_strerror(ret));
    /* should not set verdict to INET_DROP since netif_xmit
     * always consume the mbuf while INET_DROP means mbuf'll
     * be free in INET_HOOK.*/
    }

    *verdict = INET_STOLEN;
    return 0;

syn_rcv_out:
    /* drop and destroy the packet */
    *verdict = INET_DROP;
    return 0;
}
  1. 判断第一次握手只有 syn 包,并且访问的后端服务 svc 开启了 syn proxy 防护。如果在黑名单那么退出,返回 INET_DROP
  2. syn_proxy_reuse_mbuf 复用 mbuf, 为什么说是复用呢?因为对 mbuf 修改后,直接当做回包返回给了 client,这个修改是重点
  3. 三个 memcpy 操作是交换原来 mbuf 的目的地址和源地址,然后调用 netif_xmit 返回给了 client

来看一下 syn_proxy_reuse_mbuf 做了哪些事情?

static void syn_proxy_reuse_mbuf(int af, struct rte_mbuf *mbuf,
        struct dp_vs_synproxy_opt *opt)
{
    uint32_t isn;
    uint32_t tmpaddr;
    uint16_t tmpport;
    struct iphdr *iph;
    struct tcphdr *th;
    int ip4hlen;

    iph = (struct iphdr*)ip4_hdr(mbuf);
    ip4hlen = ip4_hdrlen(mbuf);
    th = tcp_hdr(mbuf);

    if (mbuf_may_pull(mbuf, ip4hlen + (th->doff<< 2)) != 0)
        return;

    /* deal with tcp options */
    syn_proxy_parse_set_opts(mbuf, th, opt);

    /* get cookie */
    isn = syn_proxy_cookie_v4_init_sequence(mbuf, opt);

    /* set syn-ack flag */
    ((uint8_t *)th)[13] = 0x12;

    /* exchage ports */
    tmpport = th->dest;
    th->dest = th->source;
    th->source = tmpport;

    /* set seq(cookie) and ack_seq */
    th->ack_seq = htonl(ntohl(th->seq) + 1);
    th->seq = htonl(isn);

    /* exchage addresses */
    tmpaddr = iph->saddr;
    iph->saddr = iph->daddr;
    iph->daddr = tmpaddr;

    iph->ttl = dp_vs_synproxy_ctrl_synack_ttl;
    iph->tos = 0;

    /* compute checksum */
    if (likely(mbuf->ol_flags & PKT_TX_TCP_CKSUM)) {
        mbuf->l3_len = ip4hlen;
        mbuf->l4_len = ntohs(ip4_hdr(mbuf)->total_length) - ip4hlen;
        th->check = rte_ipv4_phdr_cksum(ip4_hdr(mbuf), mbuf->ol_flags);
    } else {
        if (mbuf_may_pull(mbuf, mbuf->pkt_len) != 0)
            return;
        tcp4_send_csum((struct ipv4_hdr*)iph, th);
    }

    if (likely(mbuf->ol_flags & PKT_TX_IP_CKSUM))
        iph->check = 0;
    else
        ip4_send_csum((struct ipv4_hdr*)iph);
}
  1. 调用 syn_proxy_parse_set_opts 设置 tcp option, 包括 mss, window size, timestamp
  2. 调用 syn_proxy_cookie_v4_init_sequence 计算生成 cookie,函数是 secure_tcp_syn_cookie(iph->saddr, iph->daddr, th->source, th->dest, ntohl(th->seq), rte_atomic32_read(&g_minute_count), data);
  3. 交换 dest, source 端口
  4. 设置 seq, 其中 ack seq 是客户端的序号加一,而返回的 syn seq 就是刚刚计算出来的 cookie
  5. 交换源和目地 ip 地址
  6. 如果硬件不支持计算 csum,调用 ip4_send_csum 生成

ipv4_rcv 接收 client syn 请求小结:此时可以看到,lb 是不分配任务内存资源的,他将状态生成 cookie,保存到 syn seq 中。如果此时是攻击流量,那么 lb 基本没什么负担。分析到这第一阶段结束,dp_vs_pre_routing 返回 INET_STOLEN,INET_HOOK 直接返回,并不会执行 okfn 回调。

ipv4_rcv 接收 client ack 应答

如前文所述,HOOK 会执行 INET_HOOK_PRE_ROUTING 注册的回调函数:dp_vs_pre_routingdp_vs_in,当 client 返回 ack 应答时,dp_vs_pre_routing 返回 DPVS_ACCEPT, 继续执行 dp_vs_in 逻辑。
首先,此时还没有建立连接,流表里并不存在。dp_vs_proto_lookup 查找协义,当前只看 dp_vs_proto_tcp. 由于 conn_lookup 查找不到流表,所以继续执行 tcp_conn_sched

static int tcp_conn_sched(struct dp_vs_proto *proto, 
                          const struct dp_vs_iphdr *iph,
                          struct rte_mbuf *mbuf, 
                          struct dp_vs_conn **conn,
                          int *verdict)
{
    struct tcphdr *th, _tcph;
    struct dp_vs_service *svc;
    assert(proto && iph && mbuf && conn && verdict);

    th = mbuf_header_pointer(mbuf, iph->len, sizeof(_tcph), &_tcph);
    if (unlikely(!th)) {
        *verdict = INET_DROP;
        return EDPVS_INVPKT;
    }

    /* Syn-proxy step 2 logic: receive client's 3-handshacke ack packet */
    /* When synproxy disabled, only SYN packets can arrive here.
     * So don't judge SYNPROXY flag here! If SYNPROXY flag judged, and syn_proxy
     * got disbled and keepalived reloaded, SYN packets for RS may never be sent. */
    if (dp_vs_synproxy_ack_rcv(iph->af, mbuf, th, proto, conn, iph, verdict) == 0) {
        /* Attention: First ACK packet is also stored in conn->ack_mbuf */
        return EDPVS_PKTSTOLEN;
    }

    /* only TCP-SYN without other flag can be scheduled */
    if (!th->syn || th->ack || th->fin || th->rst) {
#ifdef CONFIG_DPVS_IPVS_DEBUG
        char dbuf[64], sbuf[64];
        const char *daddr, *saddr;

        daddr = inet_ntop(iph->af, &iph->daddr, dbuf, sizeof(dbuf)) ? dbuf : "::";
        saddr = inet_ntop(iph->af, &iph->saddr, sbuf, sizeof(sbuf)) ? sbuf : "::";
        RTE_LOG(DEBUG, IPVS,
                "%s: [%d] try sched non-SYN packet: [%c%c%c%c] %s:%d->%s:%d\n", 
                __func__, rte_lcore_id(),
                th->syn ? 'S' : '.', th->fin ? 'F' : '.',
                th->ack ? 'A' : '.', th->rst ? 'R' : '.',
                saddr, ntohs(th->source), daddr, ntohs(th->dest));
#endif

        /* Drop tcp packet which is send to vip and !vport */
        if (g_defence_tcp_drop &&
                (svc = dp_vs_lookup_vip(iph->af, iph->proto, &iph->daddr))) {
            dp_vs_estats_inc(DEFENCE_TCP_DROP);
            *verdict = INET_DROP;
            return EDPVS_INVPKT;
        }

        *verdict = INET_ACCEPT;
        return EDPVS_INVAL;
    }

    svc = dp_vs_service_lookup(iph->af, iph->proto, 
                               &iph->daddr, th->dest, 0, mbuf, NULL);
    if (!svc) {
        /* Drop tcp packet which is send to vip and !vport */
        if (g_defence_tcp_drop &&
                (svc = dp_vs_lookup_vip(iph->af, iph->proto, &iph->daddr))) {
            dp_vs_estats_inc(DEFENCE_TCP_DROP);
            *verdict = INET_DROP;
            return EDPVS_INVPKT;
        }
        *verdict = INET_ACCEPT;
        return EDPVS_NOSERV;
    }

    *conn = dp_vs_schedule(svc, iph, mbuf, false);
    if (!*conn) {
        dp_vs_service_put(svc);
        *verdict = INET_DROP;
        return EDPVS_RESOURCE;
    }

    dp_vs_service_put(svc);

    return EDPVS_OK;
}

看注释,如果 dp_vs_synproxy_ack_rcv 执行成功,那么返回 EDPVS_PKTSTOLEN, 最终 dp_vs_in 也会返回 STOLEN. 再细看 dp_vs_synproxy_ack_rcv 源码

/* Syn-proxy step 2 logic: receive client's Ack
 * Receive client's 3-handshakes ack packet, do cookie check and then
 * send syn to rs after creating a session */
int dp_vs_synproxy_ack_rcv(int af, struct rte_mbuf *mbuf,
        struct tcphdr *th, struct dp_vs_proto *pp,
        struct dp_vs_conn **cpp,
        const struct dp_vs_iphdr *iph, int *verdict)
{
    int res;
    struct dp_vs_synproxy_opt opt;
    struct dp_vs_service *svc;
    int res_cookie_check;

    /* Do not check svc syn-proxy flag, as it may be changed after syn-proxy step 1. */
    if (!th->syn && th->ack && !th->rst && !th->fin &&
            (svc = dp_vs_service_lookup(af, iph->proto, &iph->daddr,
                                        th->dest, 0, NULL, NULL))) {
        if (dp_vs_synproxy_ctrl_defer &&
                !syn_proxy_ack_has_data(mbuf, iph, th)) {
            /* Update statistics */
            dp_vs_estats_inc(SYNPROXY_NULL_ACK);
            /* We get a pure ack when expecting ack packet with payload, so
             * have to drop it */
            dp_vs_service_put(svc);
            *verdict = INET_DROP;
            return 0;
        }

        res_cookie_check = syn_proxy_v4_cookie_check(mbuf, ntohl(th->ack_seq) - 1, &opt);
        if (!res_cookie_check) {
            /* Update statistics */
            dp_vs_estats_inc(SYNPROXY_BAD_ACK);
            /* Cookie check failed, drop the packet */
            RTE_LOG(DEBUG, IPVS, "%s: syn_cookie check failed seq=%u\n", __func__,
                    ntohl(th->ack_seq) - 1);
            dp_vs_service_put(svc);
            *verdict = INET_DROP;
            return 0;
        }

        /* Update statistics */
        dp_vs_estats_inc(SYNPROXY_OK_ACK);

        /* Let the virtual server select a real server for the incoming connetion,
         * and create a connection entry */
        *cpp = dp_vs_schedule(svc, iph, mbuf, 1);
        if (unlikely(!*cpp)) {
            RTE_LOG(WARNING, IPVS, "%s: ip_vs_schedule failed\n", __func__);
            /* FIXME: What to do when virtual service is available but no destination
             * available for a new connetion: send an icmp UNREACHABLE ? */
            dp_vs_service_put(svc);
            *verdict = INET_DROP;
            return 0;
        }
        
        /* Release the service, we do not need it any more */
        dp_vs_service_put(svc);

        /* Do nothing but print a error msg when fail, because session will be
         * correctly freed in dp_vs_conn_expire */
        if (EDPVS_OK != (res = syn_proxy_send_rs_syn(af, th, *cpp, mbuf, pp, &opt))) {
            RTE_LOG(ERR, IPVS, "%s: syn_proxy_send_rs_syn failed -- %s\n",
                    __func__, dpvs_strerror(res));
        }
        /* Count in the ack packet (STOLEN by synproxy) */
        dp_vs_stats_in(*cpp, mbuf);

        /* Active session timer, and dec  refcnt.
         * Also steal the mbuf, and let caller return immediately */
        dp_vs_conn_put(*cpp);
        *verdict = INET_STOLEN;
        return 0;
    }
    return 1;
}

使用 syn_proxy_v4_cookie_check 反解 seq cookie, 如果不匹配,那么就是攻击或是无效流量,将包丢弃。如果成功,执行 syn proxy 第二阶段,lb 调用 dp_vs_schedule 与后端 real server 建立连接,这里也有细节。

/* select an RS by service's scheduler and create a connection */
struct dp_vs_conn *dp_vs_schedule(struct dp_vs_service *svc, 
                                  const struct dp_vs_iphdr *iph,
                                  struct rte_mbuf *mbuf,
                                  bool is_synproxy_on)
{
    uint16_t _ports[2], *ports; /* sport, dport */
    struct dp_vs_dest *dest;
    struct dp_vs_conn *conn;
    struct dp_vs_conn_param param;
    struct sockaddr_in daddr, saddr;
    int err;

    assert(svc && iph && mbuf);

    ports = mbuf_header_pointer(mbuf, iph->len, sizeof(_ports), _ports);
    if (!ports)
        return NULL;
        
    /* persistent service 长连接请求*/
    if (svc->flags & DP_VS_SVC_F_PERSISTENT)
        return dp_vs_sched_persist(svc, iph,  mbuf, is_synproxy_on);

    dest = svc->scheduler->schedule(svc, mbuf); // 特定的调度算法
    if (!dest) {
        RTE_LOG(WARNING, IPVS, "%s: no dest found.\n", __func__);
#ifdef CONFIG_DPVS_MBUF_DEBUG
        dp_vs_mbuf_dump("found dest failed.", iph->af, mbuf);
#endif
        return NULL;
    }
        
    if (dest->fwdmode == DPVS_FWD_MODE_SNAT) {
        if (unlikely(iph->proto == IPPROTO_ICMP)) {
            struct icmphdr *ich, _icmph;
            ich = mbuf_header_pointer(mbuf, iph->len, sizeof(_icmph), &_icmph);
            if (!ich)
                return NULL;

            ports = _ports;
            _ports[0] = icmp4_id(ich);
            _ports[1] = ich->type << 8 | ich->code;

            /* ID may confict for diff host,
             * need we use ID pool ? */
            dp_vs_conn_fill_param(iph->af, iph->proto,
                                  &iph->daddr, &dest->addr,
                                  ports[1], ports[0],
                                  0, &param);
        } else {
            /* we cannot inherit dest (host's src port),
             * that may confict for diff hosts,
             * and using dest->port is worse choice. */
            memset(&daddr, 0, sizeof(daddr));
            daddr.sin_family = AF_INET;
            daddr.sin_addr = iph->daddr.in;
            daddr.sin_port = ports[1];
            memset(&saddr, 0, sizeof(saddr));
            saddr.sin_family = AF_INET;
            saddr.sin_addr = dest->addr.in;
            saddr.sin_port = 0;

            err = sa_fetch(NULL, &daddr, &saddr);
            if (err != 0) {
#ifdef CONFIG_DPVS_MBUF_DEBUG
                dp_vs_mbuf_dump("sa_fetch failed.", iph->af, mbuf);
#endif
                return NULL;
            }

            dp_vs_conn_fill_param(iph->af, iph->proto,
                                  &iph->daddr, &dest->addr,
                                  ports[1], saddr.sin_port,
                                  0, &param);
        }
    } else {
        if (unlikely(iph->proto == IPPROTO_ICMP)) {
            struct icmphdr *ich, _icmph;
            ich = mbuf_header_pointer(mbuf, iph->len, sizeof(_icmph), &_icmph);
            if (!ich)
                return NULL;

            ports = _ports;
            _ports[0] = icmp4_id(ich);
            _ports[1] = ich->type << 8 | ich->code;

            dp_vs_conn_fill_param(iph->af, iph->proto,
                                  &iph->saddr, &iph->daddr,
                                  ports[0], ports[1], 0, &param);
        } else {
            dp_vs_conn_fill_param(iph->af, iph->proto,
                                  &iph->saddr, &iph->daddr,
                                  ports[0], ports[1], 0, &param);
        }
    }

    conn = dp_vs_conn_new(mbuf, &param, dest,
            is_synproxy_on ? DPVS_CONN_F_SYNPROXY : 0);
    if (!conn) {
        if (dest->fwdmode == DPVS_FWD_MODE_SNAT && iph->proto != IPPROTO_ICMP)
            sa_release(NULL, &daddr, &saddr);
#ifdef CONFIG_DPVS_MBUF_DEBUG
        dp_vs_mbuf_dump("create conn failed.", iph->af, mbuf);
#endif
        return NULL;
    }

    dp_vs_stats_conn(conn);
    return conn;
}

根据服务调度算法,选择后端 real server, 就是源码里的 dest. 调用 dp_vs_conn_new 来与 dest 建立连接,这里涉及 syn proxy.

struct dp_vs_conn * dp_vs_conn_new(struct rte_mbuf *mbuf,
                                   struct dp_vs_conn_param *param,
                                   struct dp_vs_dest *dest, uint32_t flags)
{
    struct dp_vs_conn *new;
    struct conn_tuple_hash *t;
    uint16_t rport;
    __be16 _ports[2], *ports;
    int err;

    assert(mbuf && param && dest);
    // 内存池,这很重要,malloc 分配内存很慢的,特别是大量的情况下
    if (unlikely(rte_mempool_get(this_conn_cache, (void **)&new) != 0)) {
        RTE_LOG(WARNING, IPVS, "%s: no memory\n", __func__);
        return NULL;
    }
    memset(new, 0, sizeof(struct dp_vs_conn));
    new->connpool = this_conn_cache;

    /* set proper RS port */
    if ((flags & DPVS_CONN_F_TEMPLATE) || param->ct_dport != 0)
        rport = param->ct_dport;
    else if (dest->fwdmode == DPVS_FWD_MODE_SNAT) {
        if (unlikely(param->proto == IPPROTO_ICMP)) {
            rport = param->vport;
        } else {
            ports = mbuf_header_pointer(mbuf, ip4_hdrlen(mbuf),
                                        sizeof(_ports), _ports);
            if (unlikely(!ports)) {
                RTE_LOG(WARNING, IPVS, "%s: no memory\n", __func__);
                goto errout;
            }
            rport = ports[0];
        }
    } else
        rport = dest->port;

    /* init inbound conn tuple hash */
    t = &tuplehash_in(new);
    t->direct   = DPVS_CONN_DIR_INBOUND; // 入口流量,肯定是外网进来的
    t->af       = param->af;
    t->proto    = param->proto;
    t->saddr    = *param->caddr; // 源地址是 外网  client addr
    t->sport    = param->cport;
    t->daddr    = *param->vaddr; // 目地地址是 服务虚IP地址
    t->dport    = param->vport;
    INIT_LIST_HEAD(&t->list);

    /* init outbound conn tuple hash */
    t = &tuplehash_out(new);
    t->direct   = DPVS_CONN_DIR_OUTBOUND; // 出口
    t->af       = param->af;
    t->proto    = param->proto;
    if (dest->fwdmode == DPVS_FWD_MODE_SNAT)
        t->saddr.in.s_addr    = ip4_hdr(mbuf)->src_addr;
    else
        t->saddr    = dest->addr;
    t->sport    = rport;
    t->daddr    = *param->caddr;    /* non-FNAT */
    t->dport    = param->cport;     /* non-FNAT */
    INIT_LIST_HEAD(&t->list);

    /* init connection */
    new->af     = param->af;
    new->proto  = param->proto;
    new->caddr  = *param->caddr;
    new->cport  = param->cport;
    new->vaddr  = *param->vaddr;
    new->vport  = param->vport;
    new->laddr  = *param->caddr;    /* non-FNAT */
    new->lport  = param->cport;     /* non-FNAT */
    if (dest->fwdmode == DPVS_FWD_MODE_SNAT)
        new->daddr.in.s_addr  = ip4_hdr(mbuf)->src_addr;
    else
        new->daddr  = dest->addr;
    new->dport  = rport;

    /* neighbour confirm cache 邻居子系统*/
    new->in_nexthop.in.s_addr = htonl(INADDR_ANY);
    new->out_nexthop.in.s_addr = htonl(INADDR_ANY);

    new->in_dev = NULL;
    new->out_dev = NULL;

    /* Controll member */
    new->control = NULL;
    rte_atomic32_clear(&new->n_control);

    /* caller will use it right after created,
     * just like dp_vs_conn_get(). */
    rte_atomic32_set(&new->refcnt, 1);
    new->flags  = flags;
    new->state  = 0;
#ifdef CONFIG_DPVS_IPVS_STATS_DEBUG
    new->ctime = rte_rdtsc();
#endif

    /* bind destination and corresponding trasmitter */
    // 在这里设置 转发模式相关的几个发包收包操作
    err = conn_bind_dest(new, dest);
    if (err != EDPVS_OK) {
        RTE_LOG(WARNING, IPVS, "%s: fail to bind dest: %s\n",
                __func__, dpvs_strerror(err));
        goto errout;
    }

    /* FNAT only: select and bind local address/port */
    if (dest->fwdmode == DPVS_FWD_MODE_FNAT) {
        if ((err = dp_vs_laddr_bind(new, dest->svc)) != EDPVS_OK)
            goto unbind_dest;
    }

    /* add to hash table (dual dir for each bucket) */
    if ((err = conn_hash(new)) != EDPVS_OK)
        goto unbind_laddr;

    /* timer */
    new->timeout.tv_sec = conn_init_timeout;
    new->timeout.tv_usec = 0;

    /* synproxy 用于 syn proxy 使用*/
    INIT_LIST_HEAD(&new->ack_mbuf);
    rte_atomic32_set(&new->syn_retry_max, 0);
    rte_atomic32_set(&new->dup_ack_cnt, 0);
    if ((flags & DPVS_CONN_F_SYNPROXY) && !(flags & DPVS_CONN_F_TEMPLATE)) {
        struct tcphdr _tcph, *th;
        struct dp_vs_synproxy_ack_pakcet *ack_mbuf;
        struct dp_vs_proto *pp;

        th = mbuf_header_pointer(mbuf, ip4_hdrlen(mbuf), sizeof(_tcph), &_tcph);
        if (!th) {
            RTE_LOG(ERR, IPVS, "%s: get tcphdr failed\n", __func__);
            goto unbind_laddr;
        }

        /* save ack packet */
        if (unlikely(rte_mempool_get(this_ack_mbufpool, (void **)&ack_mbuf) != 0)) {
            RTE_LOG(ERR, IPVS, "%s: no memory\n", __func__);
            goto unbind_laddr;
        }
        ack_mbuf->mbuf = mbuf;
        list_add_tail(&ack_mbuf->list, &new->ack_mbuf);
        new->ack_num++;
        sp_dbg_stats32_inc(sp_ack_saved);

        /* save ack_seq - 1 */
        new->syn_proxy_seq.isn =
            htonl((uint32_t) ((ntohl(th->ack_seq) - 1)));

        /* save ack_seq */
        new->fnat_seq.fdata_seq = htonl(th->ack_seq);

        /* FIXME: use DP_VS_TCP_S_SYN_SENT for syn */
        pp = dp_vs_proto_lookup(param->proto);
        new->timeout.tv_sec = pp->timeout_table[new->state = DPVS_TCP_S_SYN_SENT];
    }

    this_conn_count++;

    /* schedule conn timer */
    dpvs_time_rand_delay(&new->timeout, 1000000);
    if (new->flags & DPVS_CONN_F_TEMPLATE)
        dpvs_timer_sched(&new->timer, &new->timeout, conn_expire, new, true);
    else
        dpvs_timer_sched(&new->timer, &new->timeout, conn_expire, new, false);

#ifdef CONFIG_DPVS_IPVS_DEBUG
    conn_dump("new conn: ", new);
#endif
    return new;

unbind_laddr:
    dp_vs_laddr_unbind(new);
unbind_dest:
    conn_unbind_dest(new);
errout:
    rte_mempool_put(this_conn_cache, new);
    return NULL;
}
  1. 调用 tuplehash_in 生成两个方向的 tuplehash 用于检索
  2. conn_bind_dest 根据各个转发模式绑定回调
   case DPVS_FWD_MODE_FNAT:
        conn->packet_xmit = dp_vs_xmit_fnat;
        conn->packet_out_xmit = dp_vs_out_xmit_fnat;
  1. dp_vs_laddr_bind 绑定 LB 本地 socket, 这个很好理解,fullnat 做了双向 nat
  2. conn_hash 将连接加到流表 this_conn_tab 中
  3. 处理 synproxy, 将 mbuf 加到 ack_mbuf 列表。将 client 发来的 fnat_seq 保存到 fnat_seq,将 fnat_seq - 1 保存到 syn_proxy_seq
  4. 将连接加到 dpvs_timer_sched 超时控制。

再回到函数 dp_vs_synproxy_ack_rcv, 当 dp_vs_schedule 创建连接后,调用 syn_proxy_send_rs_syn 完成 lb 与 real server 建连。

static int syn_proxy_send_rs_syn(int af, const struct tcphdr *th,
        struct dp_vs_conn *cp, struct rte_mbuf *mbuf,
        struct dp_vs_proto *pp, struct dp_vs_synproxy_opt *opt)
{
    int tcp_hdr_size;
    struct rte_mbuf *syn_mbuf, *syn_mbuf_cloned;
    struct rte_mempool *pool;
    struct iphdr *ack_iph;
    struct iphdr *syn_iph;
    struct tcphdr *syn_th; 

    if (!cp->packet_xmit) {
        RTE_LOG(WARNING, IPVS, "%s: packet_xmit is null\n", __func__);
        return EDPVS_INVAL;
    }

    /* Allocate mbuf from device mempool */
    pool = get_mbuf_pool(cp, DPVS_CONN_DIR_INBOUND);
    if (unlikely(!pool)) {
        //RTE_LOG(WARNING, IPVS, "%s: %s\n", __func__, dpvs_strerror(EDPVS_NOROUTE));
        return EDPVS_NOROUTE;
    }

    syn_mbuf = rte_pktmbuf_alloc(pool);
    if (unlikely(!syn_mbuf)) {
        //RTE_LOG(WARNING, IPVS, "%s: %s\n", __func__, dpvs_strerror(EDPVS_NOMEM));
        return EDPVS_NOMEM;
    }
    syn_mbuf->userdata = NULL; /* make sure "no route info" */

    /* Reserve space for tcp header */
    tcp_hdr_size = (sizeof(struct tcphdr) + TCPOLEN_MAXSEG
            + (opt->tstamp_ok ? TCPOLEN_TSTAMP_APPA : 0)
            + (opt->wscale_ok ? TCP_OLEN_WSCALE_ALIGNED : 0)
            /* SACK_PERM is in the palce of NOP NOP of TS */
            + ((opt->sack_ok && !opt->tstamp_ok) ? TCP_OLEN_SACKPERMITTED_ALIGNED : 0));
    syn_th = (struct tcphdr *)rte_pktmbuf_prepend(syn_mbuf, tcp_hdr_size);
    if (!syn_th) {
        rte_pktmbuf_free(syn_mbuf);
        //RTE_LOG(WARNING, IPVS, "%s:%s\n", __func__, dpvs_strerror(EDPVS_NOROOM));
        return EDPVS_NOROOM;
    }

    /* Set up tcp header */
    memset(syn_th, 0, tcp_hdr_size);
    syn_th->source = th->source;
    syn_th->dest = th->dest;
    syn_th->seq = htonl(ntohl(th->seq) - 1);
    syn_th->ack_seq = 0;
    *(((uint16_t *) syn_th) + 6) = htons(((tcp_hdr_size >> 2) << 12) | /*TH_SYN*/ 0x02);
    /* FIXME: what window should we use */
    syn_th->window = htons(5000);
    syn_th->check = 0;
    syn_th->urg_ptr = 0;
    syn_th->urg = 0;
    syn_proxy_syn_build_options((uint32_t *)(syn_th + 1), opt);

    /* Reserve space for ipv4 header */
    syn_iph = (struct iphdr *)rte_pktmbuf_prepend(syn_mbuf, sizeof(struct ipv4_hdr));
    if (!syn_iph) {
        rte_pktmbuf_free(syn_mbuf);
        //RTE_LOG(WARNING, IPVS, "%s:%s\n", __func__, dpvs_strerror(EDPVS_NOROOM));
        return EDPVS_NOROOM;
    }

    ack_iph = (struct iphdr *)ip4_hdr(mbuf);
    *((uint16_t *) syn_iph) = htons((4 << 12) | (5 << 8) | (ack_iph->tos & 0x1E));
    syn_iph->tot_len = htons(syn_mbuf->pkt_len);
    syn_iph->frag_off = htons(IPV4_HDR_DF_FLAG);
    syn_iph->ttl = 64;
    syn_iph->protocol = IPPROTO_TCP;
    syn_iph->saddr = ack_iph->saddr;
    syn_iph->daddr = ack_iph->daddr;

    /* checksum is done by fnat_in_handler */
    syn_iph->check = 0;

    /* Save syn_mbuf if syn retransmission is on */
    if (dp_vs_synproxy_ctrl_syn_retry > 0) {
        syn_mbuf_cloned = rte_pktmbuf_clone(syn_mbuf, pool);
        if (unlikely(!syn_mbuf_cloned)) {
            rte_pktmbuf_free(syn_mbuf);
            //RTE_LOG(WARNING, IPVS, "%s:%s\n", __func__, dpvs_strerror(EDPVS_NOMEM));
            return EDPVS_NOMEM;
        }

        syn_mbuf_cloned->userdata = NULL;
        cp->syn_mbuf = syn_mbuf_cloned;
        sp_dbg_stats32_inc(sp_syn_saved);
        rte_atomic32_set(&cp->syn_retry_max, dp_vs_synproxy_ctrl_syn_retry);
    }

    /* Count in the syn packet */
    dp_vs_stats_in(cp, mbuf);

    /* If xmit failed, syn_mbuf will be freed correctly */
    cp->packet_xmit(pp, cp, syn_mbuf);

    return EDPVS_OK;
}
  1. 从内存池中分配 syn_mbuf,用于发送到后端 real server
  2. 借助 syn_th 填充 syn_mbuf 四层头: 源,目的端口,seq,window 等等
  3. 借助 syn_iph 填充 syn_mbuf 三层头: 源地址,目的地址等等
  4. 调用 packet_xmit 发送 syn_mbuf 给 rs, 由前文 conn_bind_dest 可知最终调用 dp_vs_xmit_fnat,其中最关键的就是调用 tcp_fnat_in_handler
    /* 
     * for SYN packet
     * 1. remove tcp timestamp option
     *    laddress for different client have diff timestamp.
     * 2. save original TCP sequence for seq-adjust later.
     *    since TCP option will be change.
     * 3. add TOA option
     *    so that RS with TOA module can get real client IP.
     */
    if (th->syn && !th->ack) {
        tcp_in_remove_ts(th);
        tcp_in_init_seq(conn, mbuf, th);
        tcp_in_add_toa(conn, mbuf, th);
    }

    /* add toa to first data packet */
    if (ntohl(th->ack_seq) == conn->fnat_seq.fdata_seq
            && !th->syn && !th->rst && !th->fin)
        tcp_in_add_toa(conn, mbuf, th);

    tcp_in_adjust_seq(conn, th);

    /* L4 translation */
    th->source  = conn->lport;
    th->dest    = conn->dport;
  1. 如果是 syn 包,第一次和 rs 握手,要移除 tcp header 中的 ts, 初始化 seq,并且要记录 seq delta.
  2. 增加 toa 模块,这样后端 rs 就能拿到真正的 client ip port
  3. 对于正常己建立连接的数据包,tcp_in_adjust_seq 调整 seq 差值。
    最后由将 syn 包发送给 rs

ipv4_rcv 接收 rs ack 应答

当 rs 返回 ack 应答时,数据包经过 dp_vs_in 处理,此时在流表里己经有 conn 了,会走入 syn proxy 逻辑

            /* Syn-proxy 3 logic: receive syn-ack from rs */
            if (dp_vs_synproxy_synack_rcv(mbuf, conn, prot,
                                          ip4_hdrlen(mbuf), &verdict) == 0) {
                dp_vs_stats_out(conn, mbuf);
                dp_vs_conn_put(conn);
                return verdict;
            }

那么看下 dp_vs_synproxy_synack_rcv 具体实现

/* Syn-proxy step 3 logic: receive rs's Syn/Ack.
 * Update syn_proxy_seq.delta and send stored ack mbufs to rs. */
int dp_vs_synproxy_synack_rcv(struct rte_mbuf *mbuf, struct dp_vs_conn *cp,
        struct dp_vs_proto *pp, int ihl, int *verdict)
{
    struct tcphdr _tcph, *th;
    struct dp_vs_synproxy_ack_pakcet *tmbuf, *tmbuf2;
    struct list_head save_mbuf;
    struct dp_vs_dest *dest = cp->dest;
    unsigned conn_timeout = 0;

    th = mbuf_header_pointer(mbuf, ihl, sizeof(_tcph), &_tcph);
    if (unlikely(!th)) {
        *verdict = INET_DROP;
        return 0;
    }
    INIT_LIST_HEAD(&save_mbuf);

    if ((th->syn) && (th->ack) && (!th->rst) &&
            (cp->flags & DPVS_CONN_F_SYNPROXY) &&
            (cp->state == DPVS_TCP_S_SYN_SENT)) {
        cp->syn_proxy_seq.delta = htonl(cp->syn_proxy_seq.isn) - htonl(th->seq);
        cp->state = DPVS_TCP_S_ESTABLISHED;
        conn_timeout = dp_vs_get_conn_timeout(cp);
        if (unlikely((conn_timeout != 0) && (cp->proto == IPPROTO_TCP)))
            cp->timeout.tv_sec = conn_timeout;
        else
            cp->timeout.tv_sec = pp->timeout_table[cp->state];
        dpvs_time_rand_delay(&cp->timeout, 1000000);
        if (dest) {
            rte_atomic32_inc(&dest->actconns);
            rte_atomic32_dec(&dest->inactconns);
            cp->flags &= ~DPVS_CONN_F_INACTIVE;
        }

        /* Save tcp sequence for fullnat/nat, inside to outside */
        if (DPVS_FWD_MODE_NAT == cp->dest->fwdmode ||
                DPVS_FWD_MODE_FNAT == cp->dest->fwdmode) {
            cp->rs_end_seq = htonl(ntohl(th->seq) + 1);
            cp->rs_end_ack = th->ack_seq;

        // ip_vs_synproxy_save_fast_xmit_info ?

        /* Free stored syn mbuf, no need for retransmition any more */
        if (cp->syn_mbuf) {
            rte_pktmbuf_free(cp->syn_mbuf);
            cp->syn_mbuf = NULL;
            sp_dbg_stats32_dec(sp_syn_saved);
        }

        if (list_empty(&cp->ack_mbuf)) {
            /*
             * FIXME: Maybe a bug here, print err msg and go.
             * Attention: cp->state has been changed and we
             * should still DROP the syn/ack mbuf.
             */
            RTE_LOG(ERR, IPVS, "%s: got ack_mbuf NULL pointer: ack-saved = %u\n",
                    __func__, cp->ack_num);
            *verdict = INET_DROP;
            return 0;
        }

        list_for_each_entry_safe(tmbuf, tmbuf2, &cp->ack_mbuf, list) {
            list_del_init(&tmbuf->list);
            cp->ack_num--;
            list_add_tail(&tmbuf->list, &save_mbuf);
        }
        assert(cp->ack_num == 0);

        list_for_each_entry_safe(tmbuf, tmbuf2, &save_mbuf, list) {
            list_del_init(&tmbuf->list);
            /* syn_mbuf will be freed correctly if xmit failed */
            cp->packet_xmit(pp, cp, tmbuf->mbuf);
            /* free dp_vs_synproxy_ack_pakcet */
            rte_mempool_put(this_ack_mbufpool, tmbuf);
            sp_dbg_stats32_dec(sp_ack_saved);
        }

        *verdict = INET_DROP;
        return 0;
    } else if ((th->rst) &&
            (cp->flags & DPVS_CONN_F_SYNPROXY) &&
            (cp->state == DPVS_TCP_S_SYN_SENT)) {
        RTE_LOG(DEBUG, IPVS, "%s: get rst from rs, seq = %u ack_seq = %u\n",
                __func__, ntohl(th->seq), ntohl(th->ack_seq));

        /* Count the delta of seq */
        cp->syn_proxy_seq.delta =
            ntohl(cp->syn_proxy_seq.isn) - ntohl(th->seq);
        cp->state = DPVS_TCP_S_CLOSE;
        cp->timeout.tv_sec = pp->timeout_table[cp->state];
        dpvs_time_rand_delay(&cp->timeout, 1000000);
        th->seq = htonl(ntohl(th->seq) + 1);
        //syn_proxy_seq_csum_update ?

        return 1;
    }
    return 1;
}
  1. 首先判断应答包状态,必须是 syn 和 ack 包, 并且开启了 synproxy, 当前 conn 连接处于 DPVS_TCP_S_SYN_SENT 状态
  2. 更新 syn_proxy_seq.delta 序列号差值
  3. 设置 conn 状态是 DPVS_TCP_S_ESTABLISHED
  4. 保存序号 rs_end_seq 和 rs_end_ack
  5. 释放 syn_mbuf,己经不需要了
  6. 在全局 ack_mbuf 链表中删除自己的 ack_mbuf 引用
  7. 调用 dp_vs_xmit_fnat 将 ack_mbuf 发送出去,从哪发送到哪呢?这个 ack_mbuf 是 client 发过来的,此时要发送到后端 real server. 函数内部修改源目的地址和端口,并修改 seq 等等。此时真正的完成了三次握手。

ipv4_rcv 正常发送数据

这块逻辑就不贴代码了,dp_vs_in 查找流表,根据数据方向,来选择 xmit_inbound 发送到后端 rs,还是由 xmit_outbound 发送到 client,相应的回调分别是 packet_xmitpacket_out_xmit

总结

fullnat 流程还是很复杂的,特别是结合 syn proxy. 下一篇再分析流表超时管理。

上一篇下一篇

猜你喜欢

热点阅读