Java Foundation面试

JVM知识整理

2020-07-29  本文已影响0人  yaco
JVM

一、Java内存布局

1、Java内部布局全貌

Java内部布局

JVM包含两个子系统和两个组件:

各组件的功能大致如下:

2、Java内存模型工作机制

Java内存模型工作机制

3、JVM 运行时数据区

Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域。JDK. 1.8 和之前的版本略有不同,下面会介绍到。

JDK 1.8 之前:

1.8之前的JDK

JDK 1.8 :

1.8之后的JDK

不同虚拟机的运行时数据区可能略微有所不同,但都会遵从 Java 虚拟机规范, Java 虚拟机规范规定的区域分为以下 5 个部分,其中线程私有程序计数器、虚拟机栈、本地方法栈;线程共享堆、方法区、直接内存。

(1)程序计数器(Program Counter Register)

程序计数器是线程私有的属性,其主要有两个作用:

注意:程序计数器是唯一一个不会出现 OutOfMemoryError 的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。

(2)Java 虚拟机栈(Java Virtual Machine Stacks)

与程序计数器一样,Java 虚拟机栈也是线程私有的,Java 内存可以粗糙的区分为堆内存(Heap)和栈内存 (Stack),其中栈就是现在说的虚拟机栈,或者说是虚拟机栈中局部变量表部分。 Java虚拟机栈中存放局部变量表、操作数栈、动态链接、方法出口信息。

Java 虚拟机栈会出现两种错误:StackOverFlowError 和 OutOfMemoryError。

(3)本地方法栈(Native Method Stack)

和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。

方法执行完毕后相应的栈帧也会出栈并释放内存空间,也会出现 StackOverFlowError 和OutOfMemoryError 两种错误。

(4)Java 堆(Java Heap)

Java 虚拟机所管理的内存中最大的一块,线程共享,此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap)

堆这里最容易出现的就是 OutOfMemoryError 错误,并且出现这种错误之后的表现形式还会有几种,比如:

  1. OutOfMemoryError: GC Overhead Limit Exceeded : 当JVM花太多时间执行垃圾回收并且只能回收很少的堆空间时,就会发生此错误。
  2. java.lang.OutOfMemoryError: Java heap space :假如在创建新的对象时, 堆内存中的空间不足以存放新创建的对象, 就会引发java.lang.OutOfMemoryError: Java heap space 错误。(和本机物理内存无关,和你配置的内存大小有关!)

(5)方法区(Methed Area)

线程共享的一块区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。

JDK 8 版本之后方法区(HotSpot 的永久代)被彻底移除了(JDK1.7 就已经开始了),取而代之是元空间,元空间使用的是直接内存。

(6)运行时常量池(Runtime Constant Pool)

用于存放编译期生成的各种字面量和符号引用,当常量池无法再申请到内存时会抛出 OutOfMemoryError 错误。

(7)直接内存(Direct Memory)

直接内存并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用。而且也可能导致 OutOfMemoryError 错误出现。

JDK1.4 中新加入的 NIO(New Input/Output) 类,引入了一种基于通道(Channel)缓存区(Buffer) 的 I/O 方式,它可以直接使用 Native 函数库直接分配堆外内存,然后通过一个存储在 Java 堆中的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样就能在一些场景中显著提高性能,因为避免了在 Java 堆和 Native 堆之间来回复制数据

本机直接内存的分配不会受到 Java 堆的限制,但是,既然是内存就会受到本机总内存大小以及处理器寻址空间的限制。

(8)补充:堆和栈的区别

4、JVM中对象的创建过程

下图便是 Java 对象的创建过程,图后会详细说明每一步的作用:

Java创建对象的过程

(1)类加载检查

虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

(2)分配内存

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。

1)内存分配方式

分配方式有 “指针碰撞” 和 “空闲列表” 两种,选择那种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。

内存分配方式

2)内存分配并发问题

对象的创建在虚拟机中是一个非常频繁的行为,哪怕只是修改一个指针所指向的位置,在并发情况下也是不安全的,可能出现正在给对象 A 分配内存,指针还没来得及修改,对象 B 又同时使用了原来的指针来分配内存的情况。解决这个问题有两种方案:

内存分配并发问题

(3)初始化零值

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

(4)设置对象头

初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是那个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

(5)执行初始化init方法

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始,在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始, 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

5、对象的内存布局

在 Hotspot 虚拟机中,对象在内存中的布局可以分为 3 块区域:对象头实例数据对齐填充

Java对象的内存布局

Java对象内存布局中最重要的一块应该就是对象头中的Mark Word部分了,他涉及到了hash值、锁状态、分代年龄等许多非常重要的内容,下面就来详细捋一下:

这部分主要用来存储对象自身的运行时数据,如hashCode、GC分代年龄等。mark word的位长度为JVM的一个Word大小,也就是说32位JVM的Mark word为32位,64位JVM为64位。为了让一个字大小存储更多的信息,JVM将字的最低两个位设置为标记位,不同标记位下的Mark Word示意如下:

64位-mark word
|-------------------------------------------------------|--------------------|
|                  Mark Word (32 bits)                  |       State        |
|-------------------------------------------------------|--------------------|
| identity_hashcode:25 | age:4 | biased_lock:1 | lock:2 |       Normal       |
|-------------------------------------------------------|--------------------|
|  thread:23 | epoch:2 | age:4 | biased_lock:1 | lock:2 |       Biased       |
|-------------------------------------------------------|--------------------|
|               ptr_to_lock_record:30          | lock:2 | Lightweight Locked |
|-------------------------------------------------------|--------------------|
|               ptr_to_heavyweight_monitor:30  | lock:2 | Heavyweight Locked |
|-------------------------------------------------------|--------------------|
|                                              | lock:2 |    Marked for GC   |
|-------------------------------------------------------|--------------------|

上面分别给出了32位和64位JVM中markword的区别,大致可以发现除了位数,基本上都是一样了。

这里以32位JVM为例,64位的情况下是一样的,32位JVM一个字是32为,64位JVM一个字是64为,JVM均用一个字的大小记录当前Mark Word中的信息。

(1)Normal无所状态

(2)Biased偏向锁状态

(3)Lightweight Locked轻量级锁状态

(4)Heavyweight Locked重量级锁状态

6、对象访问定位

Java程序需要通过 JVM 栈上的引用访问堆中的具体对象。对象的访问方式取决于 JVM 虚拟机的实现。目前主流的访问方式有 句柄直接指针 两种方式。

指针: 指向对象,代表一个对象在内存中的起始地址。

句柄: 可以理解为指向指针的指针,维护着对象的指针。句柄不直接指向对象,而是指向对象的指针(句柄不发生变化,指向固定内存地址),再由对象的指针指向对象的真实内存地址。

(1)句柄访问

Java堆中划分出一块内存来作为句柄池,引用中存储对象的句柄地址,而句柄中包含了对象实例数据对象类型数据各自的具体地址信息,具体构造如下图所示:

句柄访问

优势:引用中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中实例数据指针,而引用本身不需要修改。

(2)直接指针

如果使用直接指针访问,引用 中存储的直接就是对象地址,那么Java堆对象内部的布局中就必须考虑如何放置访问类型数据的相关信息。

直接指针

优势:速度更,节省了一次指针定位的时间开销。由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是非常可观的执行成本。HotSpot 中采用的就是这种方式。


二、Java垃圾回收

垃圾回收主要就是防止JVM溢出而存在的一套JVM自动回收垃圾机制,主要需要弄明白下面几个问题:


垃圾回收

1、内存如何分配和回收的

(1)Java内存分配模型

Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时,Java 自动内存管理最核心的功能是 堆 内存中对象的分配与回收。

Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap)。从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。

堆空间的基本结构:

Java堆内存模型

(2)Java堆内存分配策略

堆内存常见分配策略

(3)新生代内存中,为什么要有Survivor区域

好,那我们来想想在没有Survivor的情况下,有没有什么解决办法,可以避免上述情况:

(4)为什么要设置两个Survivor区

这个问题也就是复制算法的原理,堆中新生代采用的就是复制算法,下面来看一下它的魅力:

设置两个Survivor区最大的好处就是解决了碎片化,我们来分析一下:

1)首先使用单个Survivor区

单No1 单No2 单No3

经过上面的GC,可以看到最终再Survivor区出现了大量的碎片,那么向解决这个问题的最好的方式就是使用两个Survivor区。

2)使用两个Survivor区

咱们再来看看,用两个Survivor会出现什么样的情况。

双No1

2、哪些垃圾需要回收

堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断那些对象已经死亡(即不能再被任何途径使用的对象)。


如何判断对象已经死亡

(1)怎么判断对象已死亡

判断对象是否已经死亡通常有两个方法,引用计数法和可达性分析算法

1)引用计数法

给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加 1;当引用失效,计数器就减 1;任何时候计数器为 0 的对象就是不可能再被使用的。

这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。

2)可达性分析算法

这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的。

可达性分析算法

(2)四种引用是怎么进行垃圾回收的

JDK1.2 以后,Java 对引用的概念进行了扩充,将引用分为强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)

1)强引用(StrongReference)

有强引用的对象,垃圾回收器绝不会回收它,当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

2)软引用(SoftReference)

如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。常用作于告诉缓存

3)弱引用(WeakReference)

在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。

4)虚引用(PhantomReference)

与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。虚引用的用途是在 gc 时返回一个通知。

特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速 JVM 对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生

(3)如何判断一个常量是废弃常量

假如在常量池中存在字符串 "abc",如果当前没有任何 String 对象引用该字符串常量的话,就说明常量 "abc" 就是废弃常量,如果这时发生内存回收的话而且有必要的话,"abc" 就会被系统清理出常量池。

(4)如何判断一个类是无用的类

类需要同时满足下面 3 个条件才能算是 “无用的类”

虚拟机可以对满足上述 3 个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。

3、什么时候回收

(1)分代垃圾回收器工作流程

分代回收器有两个分区:老生代和新生代,新生代默认的空间占比总空间的 1/3,老生代的默认占比是 2/3。

新生代使用的是复制算法,新生代里有 3 个分区:Eden、To Survivor、From Survivor,它们的默认占比是 8:1:1,它的执行流程如下:

每次在 From Survivor 到 To Survivor 移动时都存活的对象,年龄就 +1,当年龄到达 15(默认配置是 15)时,升级为老生代。大对象也会直接进入老生代。

老生代当空间占用到达某个值之后就会触发全局垃圾收回,一般使用标记整理的执行算法。以上这些循环往复就构成了整个分代垃圾回收的整体执行流程。

(2)Minor GC和Major GC内存回收策略

多数情况,对象都在新生代 Eden 区分配。当 Eden 区分配没有足够的空间进行分配时,虚拟机将会发起一次 Minor GC。如果本次 GC 后还是没有足够的空间,则将启用分配担保机制在老年代中分配内存。

这里我们提到 Minor GC,如果你仔细观察过 GC 日常,通常我们还能从日志中发现 Major GC/Full GC。

(3)不可达的对象并非“非死不可”

(4)可以主动通知虚拟机进行垃圾回收吗

可以。程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。

4、如何回收

(1)垃圾收集算法

垃圾收集算法分类

1)标记清除算法

该算法分为“标记”和“清除”阶段:首先比较出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。它是最基础的收集算法,后续的算法都是对其不足进行改进得到。这种垃圾收集算法会带来两个明显的问题:

标记清除算法

2)复制算法

为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

复制算法

3)标记整理算法

根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。


标记-整理算法

4)分代收集算法

虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

(2)垃圾收集器

垃圾收集器分类

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。

下图展示了7种作用于不同分代的收集器,其中用于回收新生代的收集器包括Serial、PraNew、Parallel Scavenge,回收老年代的收集器包括Serial Old、Parallel Old、CMS,还有用于回收整个Java堆的G1收集器。不同收集器之间的连线表示它们可以搭配使用。

垃圾回收器 Parallel Scavenge 收集器

因为CMS和G1收集器相对比较特殊,下面单独介绍一下他们

(3)CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。

CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

从名字中的Mark Sweep这两个词可以看出,CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:

(4)G1收集器

G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.

被视为 JDK1.7 中 HotSpot 虚拟机的一个重要进化特征。它具备一下特点:

G1 收集器的运作大致分为以下几个步骤:

G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来)。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。


三、类的生命周期

1、类完整的生命周期

一个类的完整生命周期如下:


类的生命周期

Class 文件需要加载到虚拟机中之后才能运行和使用,那么虚拟机是如何加载这些 Class 文件呢?

系统加载 Class 类型的文件主要三步:加载->连接->初始化。连接过程又可分为三步:验证->准备->解析

下面开始一步一步分析类加载的过程:

2、加载阶段

类的加载过程主要完成三件事:

值得注意的是,加载阶段和连接阶段的部分内容是交叉进行的,加载阶段尚未结束,连接阶段可能就已经开始了。

3、验证阶段

验证阶段示意图

验证阶段主要就是对文件格式,元数据,字节码以及符号应用的一些验证,个人感觉跟编译检查一样的工作

4、准确阶段

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:

5、解析阶段

虚拟机将常量池中的符号引用替换成直接引用的过程。符号引用就理解为一个标示,而在直接引用直接指向内存中的地址;

符号引号和直接引用的区别:

符号引用(Symbolic References):

  • 符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能够无歧义的定位到目标即可。例如,在Class文件中它以CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info等类型的常量出现。
  • 符号引用与虚拟机的内存布局无关,引用的目标并不一定加载到内存中。在Java中,一个java类将会编译成一个class文件。在编译时,java类并不知道所引用的类的实际地址,因此只能使用符号引用来代替。比如org.simple.People类引用了org.simple.Language类,在编译时People类并不知道Language类的实际内存地址,因此只能使用符号org.simple.Language(假设是这个,当然实际中是由类似于CONSTANT_Class_info的常量来表示的)来表示Language类的地址。
  • 各种虚拟机实现的内存布局可能有所不同,但是它们能接受的符号引用都是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。

直接引用(Direct References):

  • 直接指向目标的指针(比如,指向“类型”【Class对象】、类变量、类方法的直接引用可能是指向方法区的指针)

  • 相对偏移量(比如,指向实例变量、实例方法的直接引用都是偏移量)

  • 一个能间接定位到目标的句柄

直接引用是和虚拟机的布局相关的,同一个符号引用在不同的虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经被加载入内存中了。

6、初始化阶段

对静态变量和静态代码块执行初始化工作。

初始化是类加载的最后一步,也是真正执行类中定义的 Java 程序代码(字节码),初始化阶段是执行类构造器 方法的过程。对于构造方法的调用,虚拟机会自己确保其在多线程环境中的安全性。因为构造方法是带锁线程安全,所以在多线程环境下进行类初始化的话可能会引起死锁,并且这种死锁很难被发现。

对于初始化阶段,虚拟机严格规范了有且只有5种情况下,必须对类进行初始化(只有主动去使用类才会初始化类):

(1)当遇到 new 、 getstatic、putstatic或invokestatic 这4条直接码指令时,比如 new 一个类,读取一个静态字段(未被 final 修饰)、或调用一个类的静态方法时。

(2)使用 java.lang.reflect 包的方法对类进行反射调用时如Class.forname("..."),newInstance()等等。 ,如果类没初始化,需要触发其初始化。

(3)初始化一个类,如果其父类还未初始化,则先触发该父类的初始化。

(4)当虚拟机启动时,用户需要定义一个要执行的主类 (包含 main 方法的那个类),虚拟机会先初始化这个类。

(5)MethodHandle和VarHandle可以看作是轻量级的反射调用机制,而要想使用这2个调用, 就必须先使用findStaticVarHandle来初始化要调用的类。

7、卸载过程

卸载类即该类的Class对象被GC。

卸载类需要满足3个要求:

  1. 该类的所有的实例对象都已被GC,也就是说堆不存在该类的实例对象。
  2. 该类没有在其他任何地方被引用
  3. 该类的类加载器的实例已被GC

所以,在JVM生命周期类,由jvm自带的类加载器加载的类是不会被卸载的。但是由我们自定义的类加载器加载的类是可能被卸载的。

只要想通一点就好了,jdk自带的BootstrapClassLoader,PlatformClassLoader,AppClassLoader负责加载jdk提供的类,所以它们(类加载器的实例)肯定不会被回收。而我们自定义的类加载器的实例是可以被回收的,所以使用我们自定义加载器加载的类是可以被卸载掉的。


四、类加载器

1、有哪几种类加载器

JVM 中内置了三个重要的 ClassLoader,除了 BootstrapClassLoader 其他类加载器均由 Java 实现且全部继承自java.lang.ClassLoader

  1. BootstrapClassLoader(启动类加载器) :最顶层的加载类,由C++实现,负责加载 %JAVA_HOME%/lib目录下的jar包和类或者或被 -Xbootclasspath参数指定的路径中的所有类。
  2. ExtensionClassLoader(扩展类加载器) :主要负责加载目录 %JRE_HOME%/lib/ext 目录下的jar包和类,或被 java.ext.dirs 系统变量所指定的路径下的jar包。
  3. AppClassLoader(应用程序类加载器) :面向我们用户的加载器,负责加载当前应用classpath下的所有jar包和类。
  4. 用户自定义类加载器:通过继承 java.lang.ClassLoader类的方式实现。

2、什么是双亲委派模型

每一个类都有一个对应它的类加载器。系统中的 ClassLoder 在协同工作的时候会默认使用 双亲委派模型

概括的说,双亲委派模型就是如果一个类加载器收到了类加载的请求,它首先不会自己去加载这个类,而是把这个请求委派给父类加载器去完成,每一层的类加载器都是如此,这样所有的加载请求都会被传送到顶层的启动类加载器中,只有当父加载无法完成加载请求(它的搜索范围中没找到所需的类)时,子加载器才会尝试去加载类。

3、双亲委派模型的好处


五、JVM调优

待补充


参考:

ThinkWon

JavaGuide

https://blog.csdn.net/ThinkWon/article/details/104390752

https://gitee.com/SnailClimb/JavaGuide/blob/master/docs/java/jvm/Java内存区域.md

Java对象头详解

https://gitee.com/SnailClimb/JavaGuide/blob/master/docs/java/jvm/类加载过程.md

https://blog.csdn.net/javazejian/article/details/72828483)

上一篇 下一篇

猜你喜欢

热点阅读