机器学习爱好者线性代数python数学应用

线性代数基础(python3)

2019-02-19  本文已影响0人  陨星落云
from math import sqrt,acos,pi
from decimal import Decimal,getcontext
getcontext().prec =30 #保留30小数

class Vector(object):
    def __init__(self, coordinates):
        try:
            if not coordinates:
                raise ValueError
            self.coordinates = tuple([Decimal(x) for x in coordinates])
            self.dimension = len(self.coordinates)
        except ValueError:
            raise ValueError('The coordinates must be nonempty')

        except TypeError:
            raise TypeError('The coordinates must be an iterable')
    CANNOT_NORMALIZE_ZERO_VECTOR_MSG = 'Cannot normalize the zero vector'

    #向量相加
    def plus(self,v):
        new_coordinates = [x+y for x,y in zip(self.coordinates,v.coordinates)]
        return Vector(new_coordinates)

    #向量相减
    def minus(self,v):
        new_coordinates = [x-y for x,y in zip(self.coordinates,v.coordinates)]
        return Vector(new_coordinates)

    #数乘
    def times_scalar(self,c):
        new_coordinates = [Decimal(c)*x for x in self.coordinates]
        return Vector(new_coordinates)

    #向量的模
    def magnitude(self):
        coordinates_squared = [x*x for x in self.coordinates]
        return sqrt(sum(coordinates_squared))

    #方向函数(化为单位向量)
    def normalized(self):
        try:
            magnitude = self.magnitude()
            return self.times_scalar(Decimal(1.0)/Decimal(magnitude))
        except ZeroDivisionError:
            raise Exception(self.CANNOT_NORMALIZE_ZERO_VECTOR_MSG)

    #向量点乘(内积)
    def dot(self,v):
        return sum([x*y for x,y in zip(self.coordinates,v.coordinates)])
    #向量叉乘(外积、向量积)
    def cross(self,v):
        try:
            x_1,y_1,z_1=self.coordinates
            x_2,y_2,z_2=v.coordinates
            new_coordinates=[y_1*z_2-y_2*z_1,
                             -(x_1*z_2-x_2*z_1),
                             x_1*y_2-x_2*y_1]
            return Vector(new_coordinates)
        except ValueError as e:
            msg = str(e)
            if msg == 'need more than 2 values to unpack':
                self_embedded_in_R3 = Vector(self.coordinates+('0',))
                v_embedded_in_R3 = Vector(v.coordinates+('0',))
                return self_embedded_in_R3*v_embedded_in_R3
            elif (msg == 'too many values to unpack' or
                  msg == 'need more than 1 values to unpack'):
                  raise Exception(self.ONLY_DEFINED_IN_TWO_THREE_DIMS_MSG)
            else:
                raise e
            
    #用于计算两个向量形成的平行四边形的面积
    def area_of_parallelogram_with(self,v):
        cross_product = self.cross(v)
        return cross_product.magnitude()
    
    #用于计算两个向量形成的三角形的面积
    def area_of_triangle_with(self,v):
        return self.area_of_parallelogram_with(v)/2.0
    
    #计算向量夹角
    
    def angle_with(self,v,in_degrees=False):
        try:
            u1=self.normalized()
            u2=v.normalized()
            dots=u1.dot(u2)
            if abs(abs(dots) - 1) < 1e-10:
                if dots < 0:
                    dots = -1
                else:
                    dots = 1
            angle_in_radians =acos(dots)

            if in_degrees:
                degrees_per_radian =180./pi
                return (angle_in_radians*degrees_per_radian)
            else:
                return(angle_in_radians)
        
        except Exception as e:
            if str(e)==self.CANNOT_NORMALIZE_ZERO_VECTOR_MSG:
                raise Exception ("Cannot compute an angle with the zero vector")
            else:
                raise e
            
    #判断两向量之间平行
    def is_parallel_to(self,v):
        return (self.is_zero() or
                v.is_zero() or
                self.angle_with(v)==0 or
                self.angle_with(v)==pi)
    
    def is_zero(self,tolerance=1e-10):#1乘以10的-10次方
        return self.magnitude()<tolerance

    #判断两向量正交
    def is_orthogonal_to(self,v,tolerance=1e-10):
        return abs(self.dot(v))<tolerance

    #利用向量投影分解的水平向量
    def component_parallel_to(self,basis):
        try:
            u=basis.normalized()
            weight=self.dot(u)
            return u.times_scalar(weight)
        except Exception as e:
            if str(e)==self.CANNOT_NORMALIZE_ZERO_VECTOR_MSG:
                raise Exception(self.NO_UNIQUE_PARALLEL_COMPONENT_MSG)
            else:
                raise e

    #利用向量投影分解出的垂直向量
    def component_orthogonal_to(self,basis):
        try:
            projection=self.component_parallel_to(basis)
            return self.minus(projection)
        except Exception as e:
            if str(e)==self.NO_UNIQUE_PARALLEL_COMPONENT_MSG:
                raise Exception(self.NO_UNIQUE_ORTHOGNOAL_COMPONENT_MSG)
            else:
                raise e

    #
    
    
    def __str__(self):
        return 'Vector: {}'.format(self.coordinates)

    def __eq__(self, v):
        return self.coordinates == v.coordinates
#向量相加
vector1 = Vector(['8.218','-9.341'])
vector2 = Vector(['-1.129','2.111'])
print (vector1.plus(vector2))#Vector.plus(vector1,vector2)


#向量相减
vector3 = Vector(['7.119','8.215'])
vector4 = Vector(['-8.223','0.878'])
print (vector3.minus(vector4))#Vector.minus(vector3,vector4)

#数乘
vector5 = Vector(['1.671','-1.012','-0.318'])
c=7.41
print (vector5.times_scalar(c))#Vector.times_scalar(vector5,c)

#向量的模和方向函数(化为单位向量)
vector6 = Vector(['3','4'])
print(Vector.magnitude(vector6))
print(Vector.normalized(vector6))


#向量点乘(内积)
v = Vector(['7.887','4.138'])
w = Vector(['-8.802','6.776'])
print(v.dot(w))

v = Vector(['-5.955','-4.904','-1.874'])
w = Vector(['-4.496','-8.755','7.103'])
print(v.dot(w))

#计算向量夹角
v = Vector(['3.183','-7.627'])
w =Vector(['-2.668','5.319'])
print(v.angle_with(w))

v = Vector(['7.6','1','5.188'])
w = Vector(['2.751','8.259','3.985'])
print(v.angle_with(w,in_degrees=True))

#判断两向量之间平行或正交
print('first pair')
v = Vector(['-7.579','-7.88'])
w = Vector(['22.737','23.64'])
print ('is parallel:',v.is_parallel_to(w))
print ('is orthogonal:',v.is_orthogonal_to(w))

print('second pair')
v = Vector(['-2.029','9.97','4.172'])
w = Vector(['-9.231','-6.639','-7.245'])
print ('is parallel:',v.is_parallel_to(w))
print ('is orthogonal:',v.is_orthogonal_to(w))

print('third pair')
v = Vector(['-2.328','-7.284','-1.214'])
w = Vector(['-1.1821','1.072','-2.94'])
print ('is parallel:',v.is_parallel_to(w))
print ('is orthogonal:',v.is_orthogonal_to(w))

print('four pair')
v = Vector(['2.118','4.827'])
w = Vector(['0','0'])
print ('is parallel:',v.is_parallel_to(w))
print ('is orthogonal:',v.is_orthogonal_to(w))

#利用向量投影分解出一个水平向量、一个垂直向量
print('\n#1')
v = Vector(['3.039','1.879'])
w = Vector(['0.825','2.036'])
print(v.component_parallel_to(w))

print('\n#2')
v = Vector(['-9.88','-3.264','-8.159'])
w = Vector(['-2.155','-9.353','-9.473'])
print(v.component_orthogonal_to(w))

print('\n#3')
v = Vector(['3.009','-6.172','3.692','-2.51'])
w = Vector(['6.404','-9.144','2.759','8.718'])
vpar = v.component_parallel_to(w)
vort = v.component_orthogonal_to(w)
print('parallel component:',vpar)
print('orthogonal component:',vort)

未完待续

上一篇下一篇

猜你喜欢

热点阅读