正交矩阵

2021-05-23  本文已影响0人  ltochange

什么是正交矩阵

满足公式AA^{T} =A^{T} A=E的矩阵就是正交矩阵,那么正交矩阵有什么特性呢?

将A表示由行向量组成的矩阵A=\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right),则

AA^\mathrm{T}=\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right)\left(\begin{array}{llll}\alpha_{1}^{\mathrm{T}} & \alpha_{2}^{\mathrm{T}} & \cdots & \alpha_{n}^{\mathrm{T}}\end{array}\right)

=\left(\begin{array}{c}\alpha_{1} \alpha_{1}^{{T}},\alpha_{1} \alpha_{2}^{\mathrm{T}},\cdots ,\alpha_{1} \alpha_{n}^{\mathrm{T}}\\ \alpha_{2} \alpha_{1}^{\mathrm{T}},\alpha_{2} \alpha_{2}^{\mathrm{T}},\cdots ,\alpha_{2} \alpha_{n}^{\mathrm{T}} \\ \vdots \\ \alpha_{n} \alpha_{1}^{\mathrm{T}},\alpha_{n} \alpha_{2}^{\mathrm{T}},\cdots ,\alpha_{n} \alpha_{n}^{\mathrm{T}}\end{array}\right)= \left(\begin{array}{c}1,0,\cdots ,0\\ 0,1,\cdots ,0 \\ \vdots \\ 0,0,\cdots ,1\end{array}\right)

根据公式,可知

\alpha_{i} \alpha_{i}^{\mathrm{T}}=1 ,因此\alpha_{i}是单位向量
\alpha_{i} \alpha_{j}^{\mathrm{T}}=0,因此\alpha_{i}\alpha_{j}正交

结论:正交矩阵A中的行(列)向量是两两正交的单位向量。

上一篇下一篇

猜你喜欢

热点阅读