mysql中45讲
1.MySQL的逻辑架构图
MySQL可以分为Server层和存储引擎层两部分:
1.连接器
1.)连接器负责跟客户端建立连接、获取权限、维持和管理连接。连接命令一般是这么写的:
mysql -h$ip -P$port -u$user -p
2.)连接完成后,如果你没有后续的动作,这个连接就处于空闲状态,你可以在show processlist命令中看到它
3.)客户端如果太长时间没动静,连接器就会自动将它断开。这个时间是由参数wait_timeout控制的,默认值是8小时
2.查询缓存
1.)连接建立完成后,你就可以执行select语句了。执行逻辑就会来到第二步:查询缓存
2.)之前执行过的语句及其结果可能会以key-value对的形式,被直接缓存在内存中。key是查询的语句,value是查询的结果。如果你的查询能够直接在这个缓存中找到key,那么这个value就会被直接返回给客户端。如果语句不在查询缓存中,就会继续后面的执行阶段。执行完成后,执行结果会被存入查询缓存中。你可以看到,如果查询命中缓存,MySQL不需要执行后面的复杂操作,就可以直接返回结果,这个效率会很高
3.)但是大多数情况下我会建议你不要使用查询缓存,为什么呢?因为查询缓存往往弊大于利。
查询缓存的失效非常频繁,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。因此很可能你费劲地把结果存起来,还没使用呢,就被一个更新全清空了。对于更新压力大的数据库来说,查询缓存的命中率会非常低
除非你的业务就是有一张静态表,很长时间才会更新一次。比如,一个系统配置表,那这张表上的查询才适合使用查询缓存
使用查询缓存参数:query_cache_type设置DEMAND,对于默认的SQL语句都不使用查询缓存
对于你确定要使用查询缓存的语句,可以用SQL_CACHE显式指定
需要注意的是,MySQL 8.0版本直接将查询缓存的整块功能删掉了,也就是说8.0开始彻底没有这个功能了
3.分析器
1.) 如果没有命中查询缓存,就要开始真正执行语句了。首先,MySQL需要知道你要做什么,因此需要对SQL语句做解析
4.优化器
经过了分析器,MySQL就知道你要做什么了。在开始执行之前,还要先经过优化器的处理。优化器是在表里面有多个索引的时候,决定使用哪个索引;或者在一个语句有多表关联(join)的时候,决定各个表的连接顺序。比如你执行下面这样的语句,这个语句是执行两个表的join
5.执行器
MySQL通过分析器知道了你要做什么,通过优化器知道了该怎么做,于是就进入了执行器阶段,开始执行语句。
开始执行的时候,要先判断一下你对这个表T有没有执行查询的权限,如果没有,就会返回没有权限的错误,如下所示(在工程实现上,如果命中查询缓存,会在查询缓存返回结果的时候,做权限验证。查询也会在优化器之前调用precheck验证权限)
2.日志系统
1.redo log(重做日志)和 binlog(归档日志)
重要的日志模块:redo log
write pos是当前记录的位置,一边写一边后移,写到第3号文件末尾后就回到0号文件开头。checkpoint是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件.有了redo log,InnoDB就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe。
重要的日志模块:binlog
1.) MySQL整体来看,其实就有两块:一块是Server层,它主要做的是MySQL功能层面的事情;还有一块是引擎层,负责存储相关的具体事宜。上面我们聊到的redo log是InnoDB引擎特有的日志,而Server层也有自己的日志,称为binlog(归档日志)。
2.) binlog日志只能用于归档
这两种日志有以下三点不同:
1.redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。
2.redo log是物理日志,记录的是“在某个数据页上做了什么修改”;binlog是逻辑日志,记录的是这个语句的原始逻辑,比如“给ID=2这一行的c字段加1 ”。
3.redo log是循环写的,空间固定会用完;binlog是可以追加写入的。“追加写”是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志
下面是updata跟新流程:
1.执行器先找引擎取ID=2这一行。ID是主键,引擎直接用树搜索找到这一行。如果ID=2这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。
2.执行器拿到引擎给的行数据,把这个值加上1,比如原来是N,现在就是N+1,得到新的一行数据,再调用引擎接口写入这行新数据。
3.引擎将这行新数据更新到内存中,同时将这个更新操作记录到redo log里面,此时redo log处于prepare状态。然后告知执行器执行完成了,随时可以提交事务。
4.执行器生成这个操作的binlog,并把binlog写入磁盘。
5.执行器调用引擎的提交事务接口,引擎把刚刚写入的redo log改成提交(commit)状态,更新完成。
最后三步看上去有点“绕”,将redo log的写入拆成了两个步骤:prepare和commit,这就是"两阶段提交"。
redo log用于保证crash-safe能力。innodb_flush_log_at_trx_commit这个参数设置成1的时候,表示每次事务的redo log都直接持久化到磁盘。这个参数我建议你设置成1,这样可以保证MySQL异常重启之后数据不丢失
sync_binlog这个参数设置成1的时候,表示每次事务的binlog都持久化到磁盘
3.事务隔离
1.事务定义
1.若隔离级别是“读未提交”, 则V1的值就是2。这时候事务B虽然还没有提交,但是结果已经被A看到了。因此,V2、V3也都是2。
2.若隔离级别是“读提交”,则V1是1,V2的值是2。事务B的更新在提交后才能被A看到。所以, V3的值也是2。
3.若隔离级别是“可重复读”,则V1、V2是1,V3是2。之所以V2还是1,遵循的就是这个要求:事务在执行期间看到的数据前后必须是一致的。
4.若隔离级别是“串行化”,则在事务B执行“将1改成2”的时候,会被锁住。直到事务A提交后,事务B才可以继续执行。所以从A的角度看, V1、V2值是1,V3的值是2。
参数transaction-isolation的值设置成READ-COMMITTED。你可以用show variables来查看当前的值。
mysql> show variables like 'transaction_isolation';
事务隔离的实现
理解了事务的隔离级别,我们再来看看事务隔离具体是怎么实现的。这里我们展开说明“可重复读”。
在MySQL中,实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态的值。
假设一个值从1被按顺序改成了2、3、4,在回滚日志里面就会有类似下面的记录。当前值是4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的read-view,同时你会发现,即使现在有另外一个事务正在将4改成5,这个事务跟read-view A、B、C对应的事务是不会冲突的.系统会判断,当没有事务再需要用到这些回滚日志时,回滚日志会被删除。什么时候才不需要了呢?就是当系统里没有比这个回滚日志更早的read-view的时候
长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间,对回滚段的影响,长事务还占用锁资源,也可能拖垮整个库
2.事务的启动方式
1.显式启动事务语句, begin 或 start transaction。配套的提交语句是commit,回滚语句是rollback
2.set autocommit=0,这个命令会将这个线程的自动提交关掉。意味着如果你只执行一个select语句,这个事务就启动了,而且并不会自动提交。这个事务持续存在直到你主动执行commit 或 rollback 语句,或者断开连接,因此,我会建议你总是使用set autocommit=1, 通过显式语句的方式来启动事务。
3.索引
nnoDB表T,如果你要重建索引 k,你的两个SQL语句可以这么写:
alter table T drop index k;
alter table T add index(k);
如果你要重建主键索引,也可以这么写:
alter table T drop primary key;
alter table T add primary key(id);
总结:1.监控 information_schema.Innodb_trx表,设置长事务阈值,超过就报警/或者kill;
2.Percona的pt-kill这个工具不错,推荐使用;
3.在业务功能测试阶段要求输出所有的general_log,分析日志行为提前发现问题;
4.如果使用的是MySQL 5.6或者更新版本,把innodb_undo_tablespaces设置成2(或更大的值)。如果真的出现大事务导致回滚段过大,这样设置后清理起来更方便。
深入浅出索引
mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0,
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;
insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');
查询语句:
执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行
流程:
1.在k索引树上找到k=3的记录,取得 ID = 300;
2.再到ID索引树查到ID=300对应的R3;
3.在k索引树取下一个值k=5,取得ID=500;
4.再回到ID索引树查到ID=500对应的R4;
5在k索引树取下一个值k=6,不满足条件,循环结束。
在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了k索引树的3条记录(步骤1、3和5),回表了两次(步骤2和4)。
覆盖索引
如果执行的语句是select ID from T where k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段
最左前缀原则
索引项是按照索引定义里面出现的字段顺序排序的。
当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到ID4,然后向后遍历得到所有需要的结果。
如果你要查的是所有名字第一个字是“张”的人,你的SQL语句的条件是"where name like ‘张%’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是ID3,然后向后遍历,直到不满足条件为止